DMI 208
Dosing pump

Installation and operating instructions
Declaration of Conformity

We Grundfos Alldos declare under our sole responsibility that the products DMI 208, to which this declaration relates, are in conformity with the Council Directives on the approximation of the laws of the EC Member States relating to

- Machinery (98/37/EC).
 Standard used: EN ISO 12100.
- Electrical equipment designed for use within certain voltage limits (73/23/EEC) [95].

Pfinztal, 7th December 2007

W. Schwald
Managing Director

Ulrich Stemick
Technical Director
1. General information

1.1 Introduction

These installation and operating instructions contain all the information required for starting up and handling the DMI 208 diaphragm dosing pump. If you require further information or if any problems arise, which are not described in detail in this manual, please contact the nearest Grundfos Alldos company.

1.2 Service documentation

If you have any questions, please contact the nearest Grundfos Alldos company or service workshop.

1.3 Information about the product

1.3.1 Pump types

The DMI 208 dosing pump is available for a variety of performance ranges in various sizes:

<table>
<thead>
<tr>
<th>Pump types</th>
<th>Performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td></td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td></td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td></td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td></td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td></td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td></td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td></td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td></td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td></td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td></td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td></td>
</tr>
<tr>
<td>DMI 14-4</td>
<td></td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td></td>
</tr>
</tbody>
</table>
The following is indicated on the pump nameplate:

- The pump type which specifies the stroke volume, connection size and performance data (see below).
- The pump serial number which is used to identify the pump.
- The most important characteristics of the pump configuration, e.g. dosing head and valve materials. They are described in section 4. Technical data.
- Maximum flow rate and maximum counter pressure.
- Supply voltage or mains voltage and mains frequency.

Note The pump for viscous liquids is called HV variant in the following.

1.3.2 Connection size

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Connection size</th>
<th>HV variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td>DN 4</td>
<td>DN 4</td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td>Suction side DN 4, Discharge side DN 8</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td>Suction side DN 4, Discharge side DN 8</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td>Suction side DN 4, Discharge side DN 8</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td>DN 4</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td>DN 8</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 14-4</td>
<td>DN 8</td>
<td>DN 8</td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td>DN 8</td>
<td>DN 8</td>
</tr>
</tbody>
</table>
1.3.3 Pump performance

Performance data at maximum pump counter pressure

Applies to:
- water as dosing medium
- suction lift of 0.5 m
- fully deaerated dosing head
- maximum stroke length.

* p max. applies to dosing heads without automatic deaeration; with automatic deaeration: 1 bar less. Observe the maximum permissible temperatures and that the friction loss increases with the viscosity of the dosing medium.

** The maximum dosing flow of pumps with automatic deaeration or Plus³ system is approx. 0.1 to 0.4 l/h lower, depending on pump type.

The maximum dosing flow of HV-variant pumps is up to 10 % lower.

Note

The pump can be operated in the range between 1 % and 100 % of the maximum dosing capacity.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Stroke volume V</th>
<th>50 Hz</th>
<th>60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[cm³]</td>
<td>[l/h]</td>
<td>[bar]</td>
</tr>
<tr>
<td>DMI 0.3-10</td>
<td>0.04</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td>0.11</td>
<td>0.8</td>
<td>16</td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td>0.14</td>
<td>1.0</td>
<td>16</td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td>0.15</td>
<td>1.1</td>
<td>16</td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td>0.22</td>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td>0.42</td>
<td>3.0</td>
<td>10</td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td>0.50</td>
<td>3.6</td>
<td>16</td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td>0.55</td>
<td>4.0</td>
<td>8</td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td>0.69</td>
<td>5.0</td>
<td>6</td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td>0.84</td>
<td>6.0</td>
<td>8</td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td>1.24</td>
<td>9.0</td>
<td>6</td>
</tr>
<tr>
<td>DMI 14-4</td>
<td>1.92</td>
<td>14.0</td>
<td>4</td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td>2.5</td>
<td>18.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>
1.3.4 Accuracy
• Dosing flow fluctuation: ± 1.5 % within the control range 1:10
• Linearity deviation*: ± 4 % of the full-scale value. Adjustment from max. to min. stroke length, within the control range 1:5
• Applies to:
 – water as dosing medium
 – fully deaerated dosing head
 – standard pump version.
• Construction tolerance: according to VDMA 24284.
* Higher linearity deviation for pumps with automatic deaeration or Plus³ system.

1.3.5 Inlet pressure and counter pressure / suction lift during operation

Maximum inlet pressure

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Standard</th>
<th>With automatic deaeration</th>
<th>With Plus³ system</th>
</tr>
</thead>
<tbody>
<tr>
<td>[bar]</td>
<td>[bar]</td>
<td>[bar]</td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10 - DMI 18-3.5</td>
<td>0.2</td>
<td>No flooded suction, no positive inlet pressure!</td>
<td></td>
</tr>
</tbody>
</table>

Minimum counter pressure at the pump discharge valve

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Standard</th>
<th>With automatic deaeration</th>
<th>With Plus³ system</th>
</tr>
</thead>
<tbody>
<tr>
<td>[bar]</td>
<td>[bar]</td>
<td>[bar]</td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10 - DMI 18-3.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Maximum suction lift* (start-up) for media with a viscosity similar to water

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Standard</th>
<th>With automatic deaeration</th>
<th>With Plus³ system</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10</td>
<td>Flooded suction</td>
<td>—</td>
<td>**</td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td>1.5</td>
<td>1.0</td>
<td>**</td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td>2.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td>2.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td>2.2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td>2.5</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td>2.8</td>
<td>1.0</td>
<td>**</td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td>2.8</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>DMI 14-4</td>
<td>2.8</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td>2.8</td>
<td>1.0</td>
<td>—</td>
</tr>
</tbody>
</table>

* Deaeration valve open.
** Pumps with Plus³ system are delivered with a special start-up device.

Maximum suction lift* (continuous operation) for media with a viscosity similar to water

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Standard</th>
<th>With automatic deaeration</th>
<th>With Plus³ system</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10</td>
<td>Flooded suction</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>DMI 0.8-16 - DMI 18-3.5</td>
<td>6</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Dosing head and valves moistened.

1.3.6 Sound pressure level
45 dB(A), testing according to DIN 45635-01-KL3.

1.3.7 Enclosure class
• DMI 208 Inside: IP 20.
• Pump with mains plug: IP 65.
• Pump without mains plug: IP 65 can only be ensured if the power supply cable is connected with IP 65 protection.
• Pumps with electronics: The enclosure class is only met if the sockets are protected! The data regarding the enclosure class applies to pumps with correctly inserted plugs or screwed-on caps.

1.3.8 Required energy

Power supply for AC voltage
• Rated voltage: 110 / 115 V or 230 / 240 V. Deviation from the rated value: ± 10 %.
• Supply voltage: 24 V. Deviation from the rated value: ± 15 %.
• Mains frequency: 50/60 Hz.
• Maximum input power: 22 W (reduced input power according to pump type and connected sensors).

The power supply must be electrically isolated from the signal inputs and outputs.

EMC protection
Tested according to DIN EN 50082-2, DIN V ENV 50140, DIN EN 50141, DIN V ENV 50204, DIN EN 55022 class B, DIN EN 61000-4-2, DIN EN 61000-4-5.

Mains impedance
Electromagnetic compatibility (EMC) according to the 89/336/EEC directive:
• EN 61000-3-2: 2000 (limit values for harmonic currents (device input current) ≤ 16 A per conductor).
• EN 61000-3-3: 2002 (limitation of voltage fluctuations and flickers in public low-voltage distribution networks for devices with a rated current ≤ 16 A per conductor, which do not require a special connection).
• EN 61000-6-2: 2001 (generic standard for immunity to interference for the industrial sector).
• EN 61000-6-4: 2001 (generic standard for emitted interference for the industrial sector).

1.3.9 Ambient and operating conditions
• Permissible ambient temperature: 0 °C to +40 °C.
• Permissible storage temperature: –10 °C to +50 °C.
• Permissible air humidity: max. relative humidity: 92 % (non-condensing).

Caution
The DMI 208 is NOT approved for operation in potentially explosive areas!
The installation site must be under cover!
Ensure that the enclosure class of motor and pump is not affected by the atmospheric conditions.
Pumps with electronics are only suitable for indoor use! Do not install outdoors!

Pump type

<table>
<thead>
<tr>
<th>Pump version</th>
<th>Standard</th>
<th>With automatic deaeration</th>
<th>With Plus³ system</th>
<th>HV variant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mPa s]</td>
<td>[mPa s]</td>
<td>[mPa s]</td>
<td>[mPa s]</td>
</tr>
<tr>
<td>DMI 0.3-10</td>
<td>200</td>
<td>—</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td>200</td>
<td>—</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td>100</td>
<td>50</td>
<td>—</td>
<td>500</td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td>150</td>
<td>50</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>DMI 14-4</td>
<td>150</td>
<td>50</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td>150</td>
<td>50</td>
<td>—</td>
<td>200</td>
</tr>
</tbody>
</table>

* The stated values are approximate values and apply to Newtonian liquids.
Note that the viscosity increases with decreasing temperature!

1.3.10 Dosing medium

In the event of questions regarding the material resistance and suitability of the pump for specific dosing media, please contact Grundfos Alldos.

The dosing medium must have the following basic characteristics:
• liquid
• non-abrasive
• non-inflammable.

For degassing dosing media, note the following:
• The DMI 208 with automatic deaeration can be used for degassing, non-crystallising media such as H₂O₂. Do not use this pump for chlorine bleaching agents!
• The DMI 208 with Plus³ system can be used for moderately degassing media such as chlorine bleaching agents. Do not use this pump for H₂O₂!
1.4 Applications

1.4.1 Appropriate, acceptable and correct usage

The DMI 208 pump is suitable for liquid, non-abrasive and non-inflammable media strictly in accordance with the instructions in this manual.

Warning

Other applications or the operation of pumps in ambient and operating conditions, which are not approved, are considered improper and are not permitted. Grundfos Alldos accepts no liability for any damage resulting from incorrect use.

1.5 Warranty

Warranty in accordance with our general terms of sale and delivery is only valid,

- if the pump is used in accordance with the information within this manual.
- if the pump is not dismantled or incorrectly handled.
- if repairs are carried out by authorised and qualified personnel.
- if original spare parts are used for repairs.

2. Safety

This manual contains general instructions that must be observed during installation, operation and maintenance of the pump. This manual must therefore be read by the installation engineer and the relevant qualified personnel/operators prior to installation and start-up, and must be available at the installation location of the pump at all times.

It is not only the general safety instructions given in this “Safety” section that must be observed, but also all the specific safety instructions given in other sections.

2.1 Identification of safety instructions in this manual

If the safety instructions or other advice in this manual are not observed, it may result in personal injury or malfunction and damage to the pump. The safety instructions and other advice are identified by the following symbols:

- **Warning**
- **Caution**
- **Note**

2.2 Marking at the pump

The pumps with Plus³ system are provided with the following danger notice:

- **Beware of caustic liquids!**
- **Risk of causticisation by the dosing medium!**
- **If the pump is filled, keep the cover closed and do not touch inside the priming chamber!**
- **Before dismantling and transporting the pump, empty the priming chamber completely and clean it, if necessary!**

Permissible media temperature

<table>
<thead>
<tr>
<th>Dosing head material</th>
<th>Min. media temperature</th>
<th>Max. media temperature p < 10 bar</th>
<th>Max. media temperature p < 16 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Stainless steel, DIN 1.4571*</td>
<td>–10</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>PP</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>PVDF**</td>
<td>–10</td>
<td>60*</td>
<td>20</td>
</tr>
</tbody>
</table>

* A temperature of 120 °C at a counter pressure of max. 2 bar is permitted for a short period (15 minutes).

** At 70 °C, the maximum counter pressure is 3 bar.
2.3 Qualification and training of personnel
The personnel responsible for the operation, maintenance, inspection and installation must be appropriately qualified for these tasks. Areas of responsibility, levels of authority and the supervision of the personnel must be precisely defined by the operator.

If the personnel do not have the necessary knowledge, the necessary training and instruction must be given. If necessary, training can be performed by the manufacturer/supplier at the request of the operator of the pump. It is the responsibility of the operator to make sure that the contents of this manual are understood by the personnel.

2.4 Risks when safety instructions are not observed
Non-observance of the safety instructions may have dangerous consequences for the personnel, the environment and the pump. If the safety instructions are not observed, all rights to claims for damages may be lost.

Non-observance of the safety instructions may lead to the following hazards:
- failure of important functions of the pump/system
- failure of specified methods for maintenance
- harm to humans from exposure to electrical, mechanical and chemical influences
- damage to the environment from leakage of harmful substances.

2.5 Safety-conscious working
The safety instructions in this manual, applicable national health and safety regulations and any operator internal working, operating and safety regulations must be observed.

2.6 Safety instructions for the operator/user
Hazardous hot or cold parts on the pump must be protected to prevent accidental contact.

Leakages of dangerous substances (e.g. hot, toxic) must be disposed of in a way that is not harmful to the personnel or the environment. Legal regulations must be observed.

Damage caused by electrical energy must be prevented (for more details, see for example the regulations of the VDE and the local electricity supply company).

2.7 Safety instructions for maintenance, inspection and installation work
The operator must ensure that all maintenance, inspection and installation work is carried out by authorised and qualified personnel, who have been adequately trained by reading this manual.

All work on the pump should only be carried out when the pump is stopped. The procedure described in this manual for stopping the pump must be observed.

Pumps or pump units which are used for media that are harmful to health must be decontaminated.

All safety and protective equipment must be immediately restarted or put into operation once work is complete.

Observe the points described in the initial start-up section prior to subsequent start-up.

2.8 Unauthorised modification and manufacture of spare parts
Modification or changes to the pump are only permitted following agreement with the manufacturer. Original spare parts and accessories authorised by the manufacturer are safe to use.

Using other parts can result in liability for any resulting consequences.

2.9 Improper operating methods
The operational safety of the supplied pump is only ensured if it is used in accordance with section 1. General information. The specified limit values must under no circumstances be exceeded.

2.10 Safety of the system in the event of a failure in the dosing system
DMI 208 dosing pumps are designed according to the latest technologies and are carefully manufactured and tested. However, a failure may occur in the dosing system. Systems in which dosing pumps are installed must be designed in such a way that the safety of the entire system is still ensured following a failure of the dosing pump. Provide the relevant monitoring and control functions for this.
3. Transport and intermediate storage

3.1 Transport

Caution Do not throw or drop the pump.

3.2 Delivery

The DMI 208 dosing pump is delivered in a cardboard box. Place the pump in the packaging during transport and intermediate storage.

3.3 Unpacking

Retain the packaging for future storage or return, or dispose of the packaging in accordance with local regulations.

3.4 Intermediate storage

- Permissible storage temperature: –10 °C to +50 °C.
- Permissible air humidity: max. relative humidity: 92 % (non-condensing).

3.5 Return

Return the pump in its original packaging or equivalent.

Before returning the pump to Grundfos Alldos for service, the safety declaration at the end of these instructions must be filled in by authorised personnel and attached to the pump in a visible position.

Grundfos Alldos accepts no liability for damage caused by incorrect transportation or missing or unsuitable packaging of the pump!

If Grundfos Alldos is requested to service the pump, it must be ensured that the pump is free from substances that can be injurious to health or toxic. If the pump has been used for such substances, the pump must be cleaned before it is returned.

If proper cleaning is not possible, all relevant information about the chemical must be provided.

If the above is not fulfilled, Grundfos Alldos can refuse to accept the pump for service. Costs of returning the pump are paid by the customer.

The safety declaration can be found at the end of these instructions.

Caution The replacement of the power supply cable must be carried out by an authorised Grundfos Alldos service workshop.

4. Technical data

4.1 Identification

Fig. 1 DMI 208 nameplate

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type designation</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Maximum capacity [l/h]</td>
</tr>
<tr>
<td>4</td>
<td>Voltage [V]</td>
</tr>
<tr>
<td>5</td>
<td>Frequency [Hz]</td>
</tr>
<tr>
<td>6</td>
<td>Product number</td>
</tr>
<tr>
<td>7</td>
<td>Country of origin</td>
</tr>
<tr>
<td>8</td>
<td>Year and week code</td>
</tr>
<tr>
<td>9</td>
<td>Marks of approval, CE mark, etc.</td>
</tr>
<tr>
<td>10</td>
<td>Maximum pressure [bar]</td>
</tr>
<tr>
<td>11</td>
<td>Serial number</td>
</tr>
</tbody>
</table>
4.2 Type key

<table>
<thead>
<tr>
<th>Example:</th>
<th>DMI 1.6 - 10 A PVC /V /G -T -H 1 33 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type range</td>
<td></td>
</tr>
<tr>
<td>DMI</td>
<td></td>
</tr>
<tr>
<td>Maximum flow [l/h]</td>
<td></td>
</tr>
<tr>
<td>Maximum counter pressure [bar]</td>
<td></td>
</tr>
<tr>
<td>Control variant</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Without external control interface</td>
</tr>
<tr>
<td>A</td>
<td>Internal frequency control, external contact signal control</td>
</tr>
<tr>
<td>AR</td>
<td>Internal frequency control, external contact signal control, alarm relay</td>
</tr>
<tr>
<td>Dosing head variant</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PV</td>
<td>PVDF (polyvinylidene fluoride)</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel, DIN 1.4401</td>
</tr>
<tr>
<td>PP-P3</td>
<td>PP with Plus³</td>
</tr>
<tr>
<td>PVC-P3</td>
<td>PVC with Plus³</td>
</tr>
<tr>
<td>Gasket material</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM (ethylene propylene diene monomer)</td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
</tr>
<tr>
<td>Valve ball material</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ceramics</td>
</tr>
<tr>
<td>G</td>
<td>Glass</td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel, DIN 1.4401</td>
</tr>
<tr>
<td>Control panel position</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Top-mounted</td>
</tr>
<tr>
<td>X</td>
<td>No control panel</td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1 x 230 V, 50/60 Hz</td>
</tr>
<tr>
<td>H</td>
<td>1 x 120 V, 50/60 Hz</td>
</tr>
</tbody>
</table>

Mains plug
- X No plug
- F EU (Schuko)
- B USA, Canada
- I Australia, New Zealand, Taiwan
- E Switzerland

Connection, suction/discharge
- B6 Pipe, 4/6 mm
- 3 Tube, 4/6 mm
- A5 Tube, 5/8 mm
- 4 Tube, 6/9 mm
- 6 Tube, 9/12 mm
- C4 Tube, 1/8" / 1/4"
- R Tube, 1/4" / 3/8"
- S Tube, 3/8" / 1/2"
- A Threaded, Rp 1/4, female
- V Threaded, 1/4" NPT, female
- A9 Threaded, 1/2" NPT, male
- B1 Tube 6/12 mm/ cementing d. 12 mm
- B3 Welding d. 16 mm

Valve type
- 1 Standard
 - Spring-loaded
 - 0.05 bar suction opening pressure; 0.05 bar discharge opening pressure
- 2 Spring-loaded
 - 0.05 bar suction opening pressure; 0.8 bar discharge opening pressure
- 3 Spring-loaded, discharge side only
 - 0.8 bar opening pressure
4.3 General description

The DMI 208 is a dosing pump with an overload-protected synchronous motor (which does not blow when blocked).

The DMI 208 is available in various versions, see also section 1. General information.

In the general description, a distinction is made between pumps with dosing heads with the following features:

- manual deaeration (standard)
- valve for automatic deaeration
- Plus³ system
- diaphragm leakage detection.

Option:

The pump can also be equipped with a dosing controller.

The functions are described, but only apply to the relevant pump version.

4.3.1 DMI 208 with manual deaeration (DMI 0.3-10 - DMI 18-3.5) and with valve for automatic deaeration for non-crystallising, degassing media (H₂O₂) (only for DMI 1.0-10 - DMI 18-3.5)

Fig. 2 DMI 208 with valve for automatic deaeration / with manual deaeration

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Suction valve</td>
</tr>
<tr>
<td>3b</td>
<td>Discharge valve</td>
</tr>
<tr>
<td>2a</td>
<td>Dosing head with manual deaeration</td>
</tr>
<tr>
<td>2b</td>
<td>Dosing head with automatic deaeration</td>
</tr>
<tr>
<td>I</td>
<td>Connection for deaeration line</td>
</tr>
<tr>
<td>V</td>
<td>Deaeration screw for manual deaeration</td>
</tr>
<tr>
<td>3d</td>
<td>Valve for automatic deaeration</td>
</tr>
</tbody>
</table>
4.3.2 DMI 208 Plus\(^3\) system with priming and calibration system for moderately degassing liquids (chlorine bleaching agents) (only for DMI 0.3-10 to DMI 4.0-8 / DMI 6.0-8)

Fig. 3 DMI 208 Plus\(^3\) system

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Suction valve</td>
</tr>
<tr>
<td>3b</td>
<td>Discharge valve</td>
</tr>
<tr>
<td>2c</td>
<td>Dosing head Plus(^3) system</td>
</tr>
<tr>
<td>I</td>
<td>Connection for deaeration line</td>
</tr>
<tr>
<td>V</td>
<td>Deaeration screw</td>
</tr>
<tr>
<td>A</td>
<td>Suction line from tank</td>
</tr>
<tr>
<td>1e</td>
<td>Line from calibration tube (E) to dosing head (2c)</td>
</tr>
<tr>
<td>D</td>
<td>Isolating valve at calibration tube (E)</td>
</tr>
<tr>
<td>E</td>
<td>Calibration tube</td>
</tr>
<tr>
<td>F</td>
<td>Priming chamber</td>
</tr>
<tr>
<td>G</td>
<td>Connection for overflow line (H)</td>
</tr>
<tr>
<td>H</td>
<td>Overflow line to tank (PVC tube 8/11)</td>
</tr>
<tr>
<td>J</td>
<td>Deaeration line to tank</td>
</tr>
<tr>
<td>K</td>
<td>Discharge line</td>
</tr>
<tr>
<td>L</td>
<td>Cover</td>
</tr>
<tr>
<td>M</td>
<td>Adhesive label</td>
</tr>
<tr>
<td>N</td>
<td>Deaeration hole</td>
</tr>
</tbody>
</table>

4.3.3 Functional principle of the Plus\(^3\) system

Plus\(^3\) system in operation:
- The priming chamber (F) is filled with the dosing medium via the suction valve (3a).
 - The calibration tube (E) is filled from the priming chamber.
 - Unused dosing medium flows back into the tank via the overflow line (H).
- The dosing medium flows from the calibration tube (E) to the discharge valve (3b) via the small dosing diaphragm.

Note The isolating valve (D) must be open during operation!

Fig. 4 Functional principle of the Plus\(^3\) system
4.3.4 DMI 208 with diaphragm leakage detection

Fig. 5 DMI 208 with diaphragm leakage detection

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Suction valve</td>
</tr>
<tr>
<td>3b</td>
<td>Discharge valve</td>
</tr>
<tr>
<td>2d</td>
<td>Dosing head with flange for diaphragm leakage detection</td>
</tr>
<tr>
<td>I</td>
<td>Connection for deaeration line</td>
</tr>
<tr>
<td>V</td>
<td>Deaeration screw for manual deaeration</td>
</tr>
<tr>
<td>O</td>
<td>Opto-sensor</td>
</tr>
<tr>
<td>P</td>
<td>M12 plug for socket 1</td>
</tr>
</tbody>
</table>

4.3.5 Functional principle of diaphragm leakage detection

Pumps with diaphragm leakage detection have a special dosing head flange for an optoelectronic sensor. The pump is supplied with the diaphragm leakage sensor already installed. The optoelectronic sensor contains:
- infrared transmitter
- infrared receiver.

Fig. 6 Diaphragm leakage sensor

If the diaphragm leaks,
- the liquid enters the dosing head flange.
- the light refraction changes.
- the sensor emits a signal.

The control unit operates two contacts, which can be used, for example, to trigger an alarm signal or to switch off the pump.

4.3.6 Dosing controller (without Plus³ system)

The dosing controller monitors the dosing process and emits a pulse for each suction stroke.

Fig. 7 Dosing controller

4.3.7 HV variant for liquids which are more viscous than water

All HV-variant pumps are equipped with spring-loaded valves, some have a larger nominal diameter and adapters.

Note that the HV-variant pump has other dimensions and that other connection line dimensions might be required!

Note
Dimensions for DMI 208

<table>
<thead>
<tr>
<th></th>
<th>a [mm]</th>
<th>b [mm]</th>
<th>c [mm]</th>
<th>d [mm]</th>
<th>e</th>
<th>c HV [mm]</th>
<th>d HV [mm]</th>
<th>e HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td>225</td>
<td>20.7</td>
<td>175.5</td>
<td>112</td>
<td>G 3/8</td>
<td>175.5</td>
<td>112</td>
<td>G 3/8</td>
</tr>
<tr>
<td>DMI 0.8-16 - DMI 6.0-8</td>
<td>225</td>
<td>20.7</td>
<td>175.5</td>
<td>112</td>
<td>G 3/8</td>
<td>207.5</td>
<td>176</td>
<td>G 5/8</td>
</tr>
<tr>
<td>DMI 9.0-6 - DMI 18-3.5</td>
<td>230</td>
<td>26.7</td>
<td>184.5</td>
<td>133</td>
<td>G 5/8</td>
<td>184.5</td>
<td>133</td>
<td>G 5/8</td>
</tr>
</tbody>
</table>
Fig. 9 DMI 1.0-10 - DMI 18-3.5 with valve for automatic deaeration

Fig. 10 DMI 208 with diaphragm leakage detection

Dimensions for DMI 208 with automatic deaeration / diaphragm leakage detection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>DMI 0.8-16 - DMI 6.0-8</td>
<td>223</td>
<td>218</td>
<td>221.6</td>
<td>161</td>
<td>11</td>
</tr>
<tr>
<td>DMI 9.0-6 - DMI 18-3.5</td>
<td>230</td>
<td>244</td>
<td>226.6</td>
<td>175</td>
<td>11</td>
</tr>
</tbody>
</table>
Fig. 11 DMI 0.3-10 - DMI 4.0-8 / DMI 6.0-8 with Plus³ system

Dimensions for DMI 0.3-10 - DMI 4.0-8 / DMI 6.0-8 with Plus³ system

<table>
<thead>
<tr>
<th></th>
<th>a² [mm]</th>
<th>b² [mm]</th>
<th>c² [mm]</th>
<th>d² [mm]</th>
<th>e²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td>261</td>
<td>25.2</td>
<td>251</td>
<td>197.5</td>
<td>G 3/8</td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5 Versions

4.5.1 Standard version of control unit

<table>
<thead>
<tr>
<th>Function of control unit</th>
<th>A</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay function</td>
<td>Output socket 3</td>
<td>—</td>
</tr>
<tr>
<td>Remote on/off</td>
<td>Input socket 4</td>
<td>NO</td>
</tr>
<tr>
<td>Pre-empty signal</td>
<td>Input socket 5</td>
<td>NO</td>
</tr>
<tr>
<td>Empty signal</td>
<td>Input socket 5</td>
<td>NO</td>
</tr>
<tr>
<td>Error signal</td>
<td>Output socket 3</td>
<td>—</td>
</tr>
<tr>
<td>Relay</td>
<td>Output socket 3</td>
<td>—</td>
</tr>
<tr>
<td>Contact signal</td>
<td>Input socket 4</td>
<td>x</td>
</tr>
<tr>
<td>Hall sensor</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Other settings for the AR control unit are available on request.

NO: normally open

⚠️ **Warning**

Observe the manufacturer’s safety instructions when handling chemicals!

The resistance of the parts that come into contact with the media depends on the media, media temperature and operating pressure. Ensure that parts in contact with the medium are chemically resistant to the dosing medium under operating conditions!

Caution

Further information on resistance with regard to the media, media temperature and operating pressure is available on request.

4.6 Materials

Pump housing material

Pump and control unit housing: s PS FR GF 22 (glass-fibre-reinforced polystyrene).
4.7 Control data (with control unit)
Functions of pumps with control unit:
- "continuous operation" button for function test and dosing head deaeration
- memory function (stores a maximum of 65,000 pulses) (optional)
- two-stage tank-empty signal (e.g. via Grundfos Alldos tank-empty sensor)
- stroke signal/pre-empty signal (optional)
- remote on/off.
Operating modes:
- manual
 Stroke frequency: manually adjustable
- contact signal control
 Multiplier (1:n) and divisor (n:1) (optional).

Inputs and outputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact signal</td>
<td>Maximum load: 12 V, 5 mA</td>
<td>Minimum pulse length: 10 ms</td>
</tr>
<tr>
<td>Remote on/off</td>
<td>Maximum load: 12 V, 5 mA</td>
<td></td>
</tr>
<tr>
<td>Tank-empty signal</td>
<td>Maximum load: 12 V, 5 mA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs (with AR control unit)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error signal</td>
<td>Maximum ohmic load: 50 VDC / 75 VAC, 0.5 A</td>
<td></td>
</tr>
<tr>
<td>Stroke signal</td>
<td>Contact time/stroke: 200 ms</td>
<td></td>
</tr>
<tr>
<td>Pre-empty signal</td>
<td>Maximum ohmic load: 50 VDC / 75 VAC, 0.5 A</td>
<td></td>
</tr>
</tbody>
</table>

5. Installation

5.1 Installation location

5.1.1 Space required for operation and maintenance

The pump must be installed in a position where it is freely accessible during operation and maintenance work.

The control elements must be freely accessible during operation.

Maintenance work on the dosing head and the valves must be carried out regularly.

Provide sufficient space for removing the dosing head and the valves.

5.1.2 Permissible ambient influences

Permissible ambient temperature: 0 °C to +40 °C.
Permissible air humidity: max. relative humidity: 92 % (non-condensing).

5.2 Mounting

Carefully tighten the screws, otherwise the plastic housing may be damaged.

5.2.1 Horizontal mounting

1. Mount the pump on a vertical surface (e.g. a wall) using four M6 screws.
2. Unscrew the dosing head (four inner dosing head screws (1q + 2q)).
3. Turn the intermediate ring (4q) so that the discharge hole points downwards.
4. Turn the dosing head 90 ° so that the suction valve is at the bottom and the discharge valve is at the top (dosing always flows upwards).
5. Cross-tighten the screws using a torque wrench.

Maximum torque:
DMI 0.3 - DMI 6.0: 2.1 Nm.
DMI 9.0 - DMI 18: 2.5 Nm.
5.2.3 Mounting of DMI 208 Inside

Fig. 13 Vertical mounting

1. Cut a circular hole with a diameter of 75 mm.
2. Drill four holes with a diameter of 4.5 mm according to the drilling scheme.
3. Unscrew the suction and discharge valves from the dosing head.
4. Insert the pump with the dosing head in the opening so that dosing flows upwards.
5. Use the screws provided to fix the flange to the mounting surface.
6. Screw on the suction and discharge valves.

5.2.4 Diaphragm leakage detection

With diaphragm leakage detection:
- Screw the sensor from the bottom into the opening in the dosing head flange.

5.3 General information on installation

Warning

Observe the specifications for the installation location and range of applications described in section 1. General information.

Warning

Faults, incorrect operation or faults on the pump or system can, for example, lead to excessive or insufficient dosing, or the permissible pressure may be exceeded. Consequential faults or damage must be evaluated by the operator and appropriate precautions must be taken to avoid them!
5.3.1 Installation examples

Fig. 15 Installation example of pump with manual deaeration

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1i</td>
<td>Dosing tank</td>
</tr>
<tr>
<td>2i</td>
<td>Electric agitator</td>
</tr>
<tr>
<td>3i</td>
<td>Extraction device</td>
</tr>
<tr>
<td>5i</td>
<td>Dosing pump</td>
</tr>
<tr>
<td>6i</td>
<td>Relief valve</td>
</tr>
<tr>
<td>7i</td>
<td>Pressure-loading valve</td>
</tr>
<tr>
<td>9i</td>
<td>Calibration tube</td>
</tr>
<tr>
<td>10i</td>
<td>Injection unit</td>
</tr>
<tr>
<td>15i</td>
<td>Filter</td>
</tr>
</tbody>
</table>

For pumps with Plus³ system:
- No flooded suction!
- Minimum injection pressure on the discharge side.
- The pressure at the discharge valve must be at least 1 bar higher than the pressure at the suction valve.

Fig. 16 Installation example of pump with Plus³ system

For pumps with valve for automatic deaeration:
- Flooded suction only during start-up.
5.3.2 Installation tips

- For non-degassing media with a viscosity similar to water, the pump can be mounted on the tank (observe the permissible suction lift).
- Flooded suction preferred (not with Plus³ system).
- For media with a tendency to sedimentation, install the suction line with filter (15i) so that the suction valve remains a few millimetres above the possible level of sedimentation.

With open outflow of the dosing medium or low counter pressure

A positive pressure difference of at least 1 bar must be ensured between the counter pressure at the injection point and the pressure of the dosing medium at the pump suction valve.

- If this cannot be ensured, install a pressure-loading valve (7i) immediately before the outlet or the injection unit.

- To protect the dosing pump against excessive pressure build-up, install a relief valve (6i) in the discharge line.

- For degassing media:
 - Flooded suction (not with Plus³ system).
 - Install a filter (15i) in the suction line to prevent the valves being contaminated.
• When installing the suction line, observe the following:
 – Keep the suction line as short as possible. Prevent it from becoming tangled.
 – If necessary, use swept bends instead of elbows.
 – Always route the suction line up towards the suction valve.
 – Avoid loops as they may cause air bubbles.

Fig. 22 Installation of suction line

• In the case of long discharge lines, install a non-return valve (12i) in the discharge line.

Fig. 23 Installation with non-return valve

5.4 Dosing controller

Using a dosing controller
• Screw the dosing controller onto the discharge valve.
• Connect the discharge line to the dosing controller.

5.5 Dosing controller

5.5.1 General

Warning
To protect the dosing pump against excessive pressure build-up, install a relief valve in the discharge line.

All lines must be free from strain!
Avoid loops and buckles in the tubes!
Keep the suction line as short as possible!

The flow must run in the opposite direction to gravity!

Observe the manufacturer’s safety instructions when handling chemicals!

The resistance of the parts that come into contact with the media depends on the media, media temperature and operating pressure. Ensure that parts in contact with the media are chemically resistant to the dosing medium under operating conditions!

Only use the specified line types!

With Plus³ system
• Use the suction line with foot valve and empty signal.
• For degassing media, maintain a maximum suction lift of 1.5 m.
• Open the isolating valve on the calibration system.
• Maximum suction line length:
 – 5 m for standard pumps or pumps with Plus³ system when dosing media with a viscosity similar to water.
 – 1.5 m for pumps with valve for automatic deaeration.
 – 1.2 m when dosing media with higher viscosity.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1i</td>
<td>Dosing tank</td>
</tr>
<tr>
<td>2i</td>
<td>Electric agitator</td>
</tr>
<tr>
<td>3i</td>
<td>Extraction device</td>
</tr>
<tr>
<td>5i</td>
<td>Dosing pump</td>
</tr>
<tr>
<td>6i</td>
<td>Relief valve</td>
</tr>
<tr>
<td>7i</td>
<td>Pressure-loading valve</td>
</tr>
<tr>
<td>9i</td>
<td>Calibration tube</td>
</tr>
<tr>
<td>10i</td>
<td>Injection unit</td>
</tr>
<tr>
<td>15i</td>
<td>Filter</td>
</tr>
</tbody>
</table>
5.5.2 Sizing of tube / pipe lines

Warning
PVC tube DN 4 is not suitable for use as a discharge line!
Connect PE tube DN 4 on the discharge side!

Warning
Observe the pressure stage of the used lines. The maximum permissible inlet pressure must not be exceeded!

Minimum internal diameter

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Standard [mm]</th>
<th>HV variant [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI 0.3-10</td>
<td>4</td>
<td>Suction side: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discharge side: 4</td>
</tr>
<tr>
<td>DMI 0.8-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 1.0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 1.1-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 1.6-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 3.0-10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>DMI 3.6-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 4.0-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 5.0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 6.0-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 9.0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 14-4</td>
<td>6</td>
<td>Suction side: 9</td>
</tr>
<tr>
<td>DMI 18-3.5</td>
<td></td>
<td>Discharge side: 6</td>
</tr>
</tbody>
</table>

5.5.3 Connecting the suction and discharge lines

Warning
All lines must be free from strain!
Only use the prescribed line types!

- Connect the suction line to the suction valve (3a).
 - Install the suction line in the tank so that the foot valve remains a few millimetres above the possible level of sedimentation.
- Connect the discharge line to the discharge valve (3b).

Fig. 25 Connecting the suction and discharge lines

<table>
<thead>
<tr>
<th>Pos</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Suction valve</td>
</tr>
<tr>
<td>3b</td>
<td>Discharge valve</td>
</tr>
<tr>
<td>C</td>
<td>Pipe connection</td>
</tr>
<tr>
<td>D</td>
<td>Tube connection</td>
</tr>
</tbody>
</table>

5.5.4 Connecting the overflow and deaeration lines

Warning
Observe chemical resistance!

HV-variant pumps have an assisting suction. In this case, prepare (cut) the deaeration line, but do not connect it yet!

Note
HV-variant pumps have an assisting suction. In this case, prepare (cut) the deaeration line, but do not connect it yet!

For pumps with automatic deaeration and manual deaeration

The pump has a deaeration line (PVC 4/6).
- Connect the deaeration line (J) to the connection for the deaeration line (I).

Fig. 26 Automatic deaeration
5.5.5 Installing the overflow and deaeration lines

- Shorten the overflow line (H) and deaeration line (J) to at least 10 mm above the maximum tank level.
- Insert the overflow line (H) and deaeration line (J) downwards into the dosing tank or collection container. Avoid loops.

Dosing medium can leak from the overflow and deaeration lines. Route both lines into a collection container or the tank!

Do not immerse the overflow line and deaeration line in the dosing medium!

Observe the pressure limits specified in section 1. General information!

6. Electrical connections

Make sure that the pump is suitable for the electricity supply on which it will be used.

Warning
Electrical connections must only be carried out by qualified personnel!

Disconnect the power supply before connecting the power supply cable and the relay contacts!

Observe the local safety regulations!

Warning
The pump housing must only be opened by personnel authorised by Grundfos Alldos!

Warning
Protect the cable connections and plugs against corrosion and humidity. Only remove the protective caps from the sockets that are being used.

The power supply must be electrically isolated from the signal inputs and outputs.
6.1 Connecting the signal lines for DMI 208

6.1.1 Connecting the signal lines (with control unit)

Fig. 30 Connection diagrams, control units A and AR

6.1.2 Stroke signal / pre-empty signal / error signal (with control unit AR)

Socket 3
Electrically isolated output for stroke signal or pre-empty signal and error signal.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Wire colour</th>
<th>Stroke signal / pre-empty signal</th>
<th>Error signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Error signal contact</td>
<td>Brown</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Stroke signal or pre-empty signal contact</td>
<td>White</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Stroke signal or pre-empty signal contact</td>
<td>Blue</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Error signal contact</td>
<td>Black</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
6.1.3 Remote on/off / contact input
Socket 4
For the remote on/off input and contact input.
If remote on/off and contact input are to be used at
the same time, wire 1 is assigned twice.

For the connection of one cable, use
a plug adapter with simple cable entry,
for the connection of two cables, use
a plug adapter with double cable entry,
otherwise the protection will be lost!

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Wire colour</th>
<th>Remote on/off input</th>
<th>Contact input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Brown</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Current input</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remote on/off</td>
<td>Blue</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Contact input</td>
<td>Black</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

6.1.4 Empty signal / pre-empty and empty signal
Socket 5
For the empty signal or pre-empty and empty signal
input.
The suction lines with empty signal or pre-empty and
empty signal are pre-assembled with a plug for
socket 5.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Empty signal</th>
<th>Pre-empty signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Empty signal</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>Pre-empty signal</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

6.1.5 Accessories: cable and plug for DMI 208

<table>
<thead>
<tr>
<th>Description</th>
<th>Product numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-pole M12 plug, suitable for socket 3, with 2 m signal cable</td>
<td>96609017 / 321-206</td>
</tr>
<tr>
<td>4-pole M12 plug, suitable for socket 3, with 5 m signal cable</td>
<td>96609019 / 321-208</td>
</tr>
<tr>
<td>4-pole M12 plug, suitable for socket 4, with 2 m signal cable</td>
<td>96609014 / 321-205</td>
</tr>
<tr>
<td>4-pole M12 plug, suitable for socket 4, with 5 m signal cable</td>
<td>96609016 / 321-207</td>
</tr>
<tr>
<td>5-pole M12 plug, suitable for socket 4, screwed, without cable, with double cable entry</td>
<td>96609030 / 321-210</td>
</tr>
<tr>
<td>5-pole M12 plug, suitable for socket 4, screwed, without cable, with single cable entry</td>
<td>96609031 / 321-217</td>
</tr>
<tr>
<td>Extension cable, 5 m with 5-pole coupling for M12 plug</td>
<td>96609032 / 321-223</td>
</tr>
</tbody>
</table>
6.2 Connecting the power supply cable

Warning
Disconnect the power supply before connecting the power supply cable!

Before connecting the power supply cable, check that the rated voltage stated on the pump nameplate corresponds to the local conditions!
Do not make any changes to the power supply cable or plug!

Caution
The pump can be automatically started by connecting the power supply!

The assignment between the plug-and-socket connection and the pump must be labelled clearly (e.g. by labelling the socket outlet).

- Do not switch on the power supply until you are ready to start the pump.

6.2.1 Versions without mains plug

Warning
The pump must be connected to an external clearly labelled mains switch with a minimum contact gap of 3 mm in all poles.

- Connect the pump to the mains in accordance with local electrical installation regulations.

Warning
IP 65 can only be ensured if the power supply cable is connected with IP 65 protection (not for DMI 208 Inside!).

6.2.2 Version with mains plug
- Insert the mains plug in the mains socket.

6.2.3 DMI 208 Inside
- Connect the power supply cable according to the connection chart on the pump.

![Connection chart of DMI 208 Inside](image-url)

Fig. 31 Connection chart of DMI 208 Inside

7. Start-up / shutdown

Warning
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!

Before each start-up, check the dosing head screws.
After initial start-up and after each time the diaphragm is changed, tighten the dosing head screws.
After approximately 6-10 operating hours or two days, cross-tighten the dosing head screws using a torque wrench.

- Maximum torque:
 - DMI 0.3 - DMI 6.0: 2.1 Nm.
 - DMI 9.0 - DMI 18: 2.5 Nm.

Caution
Adjust the stroke length only while the pump is running!

7.1 Initial start-up / subsequent start-up

7.1.1 Checks before start-up
- Check that the rated voltage stated on the pump nameplate corresponds to the local conditions!
- Check that all connections are secure and tighten, if necessary.
- Check that the dosing head screws are tightened with the specified torque and tighten, if necessary.
- Check that all electrical connections are correct.

With Plus³ system
- Open the isolating valve (D) at the calibration tube.

Caution
Follow the notes for stroke-length adjustment for the relevant pump type!

7.1.2 Assisting suction for Plus³ system
Pumps with Plus³ system have an assisting suction.
- Fit the syringe and the piece of hose.

![Assisting suction for Plus³ system](image-url)

Fig. 32 Assisting suction for Plus³ system

Warning
Ensure that the pump is stopped!
Sucking in dosing medium using the assisting suction for Plus³ system

Fig. 33 Sucking in the dosing medium
1. Remove the cover from the priming chamber.
2. Push the hose as far as it will go into the valve tube.
3. Draw up the syringe in order to create a perceptible low pressure, and hold the syringe in this position.
4. Dosing medium rises in the suction line, through the valve tube to the suction hose.
5. Relieve the syringe.
6. Remove the syringe and hose and empty.
7. Close the cover.
 – For HV-variant pumps, see section 7.1.3 Assisting suction for HV variant.
 – Pump without HV variant can now be started, see section 7.1.6 Starting pump without automatic deaeration.

7.1.3 Assisting suction for HV variant
HV-variant pumps have an assisting suction.
• Fit the syringe and the piece of hose.

Fig. 34 Assisting suction for HV variant

⚠️ **Warning**
Ensure that the pump is stopped!
Sucking in dosing medium using the assisting suction

1. Attach the hose to the connection for the deaeration line.
2. Open the deaeration screw, 1 or 2 turns.
3. Draw up the syringe in order to create a perceptible low pressure, and hold the syringe in this position.
4. Dosing medium rises in the suction line, up to the suction hose.
5. Relieve the syringe.
6. Carefully remove the syringe with the suction hose.
7. Empty the syringe into the dosing tank.
8. Tighten the deaeration screw.
9. Attach the deaeration line to the connection for the deaeration line. Observe the instructions in section 5.5.4 Connecting the overflow and deaeration lines.
 – The pump can now be started, see section 7.1.6 Starting pump without automatic deaeration.

7.1.5 Assisting suction for pumps with valve for automatic deaeration

At the dry suction/discharge valves:
1. Take the suction line from the tank and mount a flexible hose on the suction valve.
2. Immerse the suction line and discharge line in the glass container (to the height of the dosing head).
3. Let the dosing pump run briefly.

7.1.4 Assisting suction for systems without Plus³ system and without dosing medium flooded suction

At the dry suction/discharge valves:
1. Remove the suction line.
2. Hold a small container of water directly next to the suction valve and draw water until the dosing head is full.
3. Reinsert the suction line.

Fig. 35 Sucking in the dosing medium

Fig. 36 Assisting suction for pumps with valve for automatic deaeration
7.1.6 Starting pump without automatic deaeration
1. Open the suction and discharge isolating valves, if installed.
2. Open the deaeration valve of the dosing head by approximately 1 or 2 turns.
3. Let the pump run in continuous operation:
 – Switch on the power supply.
 – Pumps with control unit: Press the "continuous operation" button and keep it pressed.
 – The pump switches to continuous operation at maximum stroke frequency.
 – Set the stroke-length adjustment knob to maximum.
4. Leave the pump running until the dosed medium is free of air bubbles.
5. Carefully close the deaeration valve.
 – The pump is now ready for operation.

7.1.7 Starting pump with automatic deaeration
For start-up, the dosing head and valves must be moistened!
1. Open the suction and discharge isolating valves, if installed.
2. Let the pump run in continuous operation:
 – Switch on the power supply.
 – Pumps with control unit: Press the "continuous operation" button and keep it pressed.
 – The pump switches to continuous operation at maximum stroke frequency.
 – Set the stroke-length adjustment knob to maximum.
3. Leave the pump running until the dosed medium is free of air bubbles.
 – The pump is now ready for operation.

7.1.8 After initial start-up of pumps with Plus³ system
• After initial start-up, remove the adhesive label (M) from the cover (L), see fig. 3 and 37.

Fig. 37 Adhesive label

7.1.9 Tightening dosing head screws
After initial start-up and after each time the diaphragm is changed, tighten the dosing head screws.
After approximately 6-10 operating hours or two days, cross-tighten the dosing head screws using a torque wrench.
Maximum torque:
DMI 0.3 - DMI 6.0: 2.1 Nm.
DMI 9.0 - DMI 18: 2.5 Nm.

7.2 Operating the pump
To operate the pump, refer to sections 8. Operation and 9. Maintenance, and if necessary, section 10. Fault finding chart in the event of a fault.

7.3 Shutdown

Warning
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!
Do not allow any chemicals to leak from the pump. Collect and dispose of all chemicals correctly!

If possible, rinse the dosing head before shutting down the pump, e.g. by supplying it with water.

7.3.1 Switching off / uninstalling
1. Switch off the pump and disconnect it from the power supply.
2. Depressurise the system.
3. Take suitable steps to ensure that the returning dosing medium is safely collected.
4. Carefully remove all lines.
5. Uninstall the pump.

7.3.2 Cleaning
1. Rinse all parts that have come into contact with the medium very carefully:
 – lines
 – valves
 – dosing head
 – diaphragm.
2. Remove any trace of chemicals from the pump housing.

7.3.3 Storage
Storage of the pump:
1. After cleaning (see above), carefully dry all parts and reinstall the dosing head and valves, or
2. change the valves and diaphragm.

7.3.4 Disposal
Disposal of the pump:
• After cleaning (see above), dispose of the pump in accordance with the relevant regulations.
8. Operation

In the event of a diaphragm leakage, the dosing liquid may leak out of the hole in the intermediate flange between the pump and the dosing head. The parts inside the housing are protected from the dosing liquid for a short time (depending on the type of liquid) by the housing sealing. It is necessary to check regularly (daily) if liquid is leaking out of the intermediate flange. For maximum safety, we recommend the pump version with diaphragm leakage detection.

8.1 Control and display elements

8.1.1 Stroke-length adjustment

Adjust the stroke length only while the pump is running!

Caution

Fig. 38 Stroke-length adjustment knob

8.1.2 Control and display elements for pumps with control unit

Manual / Contact LEDs
- Either "Manual" or "Contact" lights up green, depending on the operating mode.

"Continuous operation" button for continuous operation.

Use the "Menu/Info" button to switch between the operating modes.

For setting the dosing flow in "Manual control" ("Manual") or "Contact signal control" ("Contact") mode.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| Light-emitting diode (LED) | • Lights up red when the pump is stopped.
 • Lights up green when the pump is started and briefly turns off during a suction stroke.
 • Flashes red if an error signal is present. |
| Manual / Contact LEDs | • Either "Manual" or "Contact" lights up green, depending on the operating mode. |
| "Continuous operation" button for continuous operation. | |
| Use the "Menu/Info" button to switch between the operating modes. | |
| For setting the dosing flow in "Manual control" ("Manual") or "Contact signal control" ("Contact") mode. |
8.2 Switching on/off

Caution
Before switching on the pump, check that it is installed correctly. Refer to sections 5. Installation and 7.1 Initial start-up / subsequent start-up.

8.2.1 Switching on the pump
- Switch on the power supply.

8.2.2 Switching off the pump
- Switch off the power supply.

8.3 Operating the pump with control unit

8.3.1 Continuous operation
For suction or deaeration, switch the pump to continuous operation, without modifying the selected operating mode and dosing flow settings.

The pump doses at maximum stroke rate. The stroke length remains the same.
- Press the "continuous operation" button.

8.3.2 Selecting the operating mode
The available operating modes are "Manual control" and "Contact signal control".
Use the "Menu/Info" button to switch between the operating modes.
- Press the "Menu/Info" button and keep it pressed for approximately 2 seconds.
 - The LED for the new operating mode flashes and then lights up continuously after approximately 2 seconds. The LED for the old operating mode turns off.

The selected operating mode is indicated by the relevant LED.

8.3.3 Setting the dosing flow in "Manual control" mode

In general, keep the stroke length setting as high as possible, and adjust the flow rate using the stroke frequency.

In "Manual control" mode, set the desired dosing flow by modifying the stroke frequency in the range between 0 % and 100 %. The internal scale applies.

8.3.4 Setting the dosing flow in "Contact signal control" mode

In general, keep the stroke length setting as high as possible, and adjust the flow rate using the stroke frequency.

In "Contact signal control" mode, set the desired dosing flow by modifying the number of strokes per contact signal received. The external scale applies.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Function</th>
<th>Number of strokes per contact signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1:1</td>
<td>The pump makes one dosing stroke per contact signal received.</td>
</tr>
<tr>
<td>1:n</td>
<td>Multiplier</td>
<td>The pump makes the set number of dosing strokes per contact signal received, e.g. 16 strokes per contact signal for the setting 1:16.</td>
</tr>
<tr>
<td>n:1</td>
<td>Divisor</td>
<td>The pump makes one dosing stroke after the set number of contact signals has been received, e.g. one stroke for every 4 contact signals for the setting 4:1.</td>
</tr>
</tbody>
</table>

Even if the pump receives more contact signals than it can process at maximum stroke frequency, the pump runs for as long as possible in continuous operation with a maximum stroke frequency.

8.3.5 Memory function
Contact signals, which cannot be processed immediately, can be stored and subsequently made available to the pump for processing. A maximum of 65,000 contact signals can be stored.

Switching on the memory function
The memory function must be switched on immediately when activating "Contact signal control" mode.

The pump is in "Manual" mode.
Press the "Menu/Info" button and keep it pressed for approximately 10 seconds.
- The "Contact" LED flashes and then lights up continuously after approximately 2 seconds. The "Manual" LED turns off.
- After approximately 10 seconds, the "Contact" LED flashes.
- The selected operating mode is indicated by the relevant LED.
 - The memory function is activated.

Switching off the memory function
Press the "Menu/Info" button and keep it pressed for approximately 2 seconds.
- The "Manual" LED then lights up continuously after approximately 2 seconds. The "Contact" LED turns off.
 - The pump is in "Manual" mode.
 - The contents of the memory are deleted.
 - The memory function is deactivated.
- The contents of the memory are not deleted by:
 - remote on/off
 - pressing the "Continuous operation" button.
8.4 Adjusting and locking the stroke length

Adjust the stroke length only while the pump is running!
Adjust the stroke length manually by turning the knob!
Follow the notes for stroke-length adjustment for the relevant pump type!

1. Remove the covering cap from the front of the stroke-length adjustment knob.
2. Use a screwdriver to loosen the locking screw by approximately 2 turns.
3. Increase/reduce the dosing flow while the pump is running.
4. Slowly turn the adjustment knob to the left/right to set the desired dosing volume.
5. Depending on the application, tighten the locking screw so that the adjustment knob can still be turned/cannot be turned any more.
6. Replace the covering cap.

8.5 Notes for stroke-length adjustment

In general, keep the stroke length setting as high as possible, and adjust the flow rate using the stroke frequency.

8.5.1 For automatic deaeration

Do not set the stroke length to less than 40 %.
Set lower flow rates by reducing the stroke frequency!

• Dosing flow between 40 % and 100 %:
 – ideal operating range: quick deaeration, only brief interruption in dosing.
 – Over 80 %, the flow rate only increases very slightly.
• Dosing flow between 20 % and 40 %:
 – deaeration is slower and unsteady.
• Dosing flow less than 20 %:
 – automatic deaeration impossible or limited.

8.5.2 With Plus³ system

Refer to the following table with minimum stroke settings for various pump types and dosing media at an ambient temperature of approximately 25 ºC. For higher temperatures, increase the stroke setting.

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum stroke setting</th>
<th>Maximum counter pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degassing media* (e.g. chlorine bleaching agents)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10 Plus³</td>
<td>100 %</td>
<td>1.5 bar (e.g. injection unit)</td>
</tr>
<tr>
<td>DMI 0.8-16 Plus³</td>
<td>100 %</td>
<td>16 bar</td>
</tr>
<tr>
<td>DMI 1.0-10 Plus³</td>
<td>80 %</td>
<td>10 bar</td>
</tr>
<tr>
<td>DMI 1.1-16 Plus³</td>
<td>80 %</td>
<td>16 bar</td>
</tr>
<tr>
<td>DMI 1.6-10 Plus³</td>
<td>60 %</td>
<td>10 bar</td>
</tr>
<tr>
<td>DMI 3.0-10 Plus³</td>
<td>20 %</td>
<td>10 bar</td>
</tr>
<tr>
<td>DMI 3.6-16 Plus³</td>
<td>40 %</td>
<td>16 bar</td>
</tr>
<tr>
<td>DMI 4.0-8 Plus³</td>
<td>20 %</td>
<td>6 bar</td>
</tr>
<tr>
<td>DMI 6.0-8 Plus³</td>
<td>10 %</td>
<td>8 bar</td>
</tr>
<tr>
<td>Non-degassing media* (e.g. PAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI 0.3-10 Plus³</td>
<td>10 %</td>
<td>10 bar</td>
</tr>
</tbody>
</table>

Other types No restriction to the stroke setting

* Except for H₂O₂, peracetic acid and other highly degassing media, use a dosing head with automatic deaeration for degassing media.
8.6 Adjusting the zero point
The zero point (no dosing) of the dosing pump is factory-set to a counter pressure of 3-4 bar. If the operating counter pressure at the injection unit deviates considerably from this value, it is advisable to readjust the zero point to obtain more precise values.

1. Connect the calibration tube to the dosing head on the suction side (except for Plus³ system).
2. Start the dosing pump.
3. Set the dosing flow to 15%.
4. Remove the covering cap from the front of the stroke-length adjustment knob.
5. Use a screwdriver to remove the locking screw.
6. Turn the adjustment knob slowly clockwise (towards the zero point) until the medium level stops falling in the calibration tube.
7. Remove the adjustment knob by pulling it up, and then reinsert it in the slot so that the indicator on the adjustment knob points to the zero point.
8. Then tighten the locking screw so that the adjustment knob can still be turned.

Fig. 40 Pump with calibration tube

Note: Always adjust the value with the discharge line connected and with operating counter pressure.

8.7 Calibrating the dosing flow with Plus³ system
For pumps with Plus³ system, the current dosing flow can be checked during operation.

Warning
Do not let the calibration tube (E) run empty!
Re-open the isolating valve (D) in due time!

1. Close the isolating valve (D) at the calibration tube (E).
2. The supply from the priming chamber (F) is shut off and the calibration tube (E) is slowly emptied.
3. Using a stop watch, measure the time (t in seconds) it takes to dose 5 or 10 ml of dosing medium, depending on pump type.
4. Re-open the isolating valve (D) at the calibration tube (E).
5. Calculate the dosing flow:

\[V = \frac{5 \text{ ml}}{t} = \frac{18}{t} \text{ [l/h]} \]

Fig. 41 Pump with calibration tube

Note: Suction line with reed contact empty signal must remain in the dosing tank!

8.8 Pumps with manual deaeration
Manual deaeration of the dosing head (while the pump is running)

Warning
Do not let the calibration tube (E) run empty!
Re-open the isolating valve (D) in due time!

1. Close the isolating valve (D) at the calibration tube (E).
2. The supply from the priming chamber (F) is shut off and the calibration tube (E) is slowly emptied.
3. Using a stop watch, measure the time (t in seconds) it takes to dose 5 or 10 ml of dosing medium, depending on pump type.
4. Re-open the isolating valve (D) at the calibration tube (E).
5. Calculate the dosing flow:

\[V = \frac{5 \text{ ml}}{t} = \frac{18}{t} \text{ [l/h]} \]

Fig. 42 Manual deaeration of the dosing head
1. Open the deaeration valve (V) of the dosing head by approximately 1 turn (2 turns with Plus³ system).
2. Press the "Start/Stop" button and keep it pressed.
 – The pump switches to continuous operation.
3. Leave the pump running until the medium flowing from the deaeration line (J) is free of air bubbles.
4. Carefully close the deaeration valve.

8.9 Changing the tank with Plus³ system
For pumps with Plus³ system, the tank can also be changed during operation by using the supply of dosing medium in the priming chamber.

Warning
The dosing medium is constantly supplied from the overflow line while the pump is running. Take suitable steps to ensure that the dosing medium is safely collected!

Warning
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!

Caution
Do not let the calibration tube (E) run empty!

Changing the tank
1. Remove the suction line, overflow line and deaeration line from the empty tank.
 – The dosing medium is then supplied from the tank (F).
2. Insert the suction line, overflow line and deaeration line into the new tank.
3. Do not immerse the overflow line and deaeration line in the dosing medium. Route the lines downwards and without loops.

There is only a limited amount of time available to change the tank, depending on the pump type and dosing flow, e.g. 30 seconds at a dosing flow of 6 l/h!

If air has been sucked in, briefly increase the stroke setting to 100 % and switch the pump to continuous operation.

Note
If possible, rinse the dosing head, e.g. by supplying it with water.

9. Maintenance

In the event of a diaphragm leakage, the dosing liquid may leak out of the hole in the intermediate flange between the pump and the dosing head. The parts inside the housing are protected from the dosing liquid for a short time (depending on the type of liquid) by the housing sealing. It is necessary to check regularly (daily) if liquid is leaking out of the intermediate flange. For maximum safety, we recommend the pump version with diaphragm leakage detection.

9.1 General notes

Warning
When dosing dangerous media, observe the corresponding safety precautions!

Warning
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!
Do not allow any chemicals to leak from the pump. Collect and dispose of all chemicals correctly!

Warning
The pump housing must only be opened by personnel authorised by Grundfos Alldos!

Caution
Repairs must only be carried out by authorised and qualified personnel!
Switch off the pump and disconnect it from the power supply before carrying out maintenance work and repairs!

9.2 Maintenance intervals
- At least every 12 months or after 4000 operating hours. When dosing crystallising liquids, more frequently.
- In the event of a fault.

9.2.1 Cleaning the valves and diaphragm
- Clean the diaphragm and valves and replace, if necessary (for stainless-steel valves: inner valve parts).

9.3 Cleaning suction and discharge valves

Note
If possible, rinse the dosing head, e.g. by supplying it with water.

9.3.1 Switching off the pump
1. Switch off the pump and disconnect it from the power supply.
2. Depressurise the system.
3. Take suitable steps to ensure that the returning dosing medium is safely collected.
9.3.2 Unscrewing the priming chamber valve (Plus³ system)
When using the Plus³ system, unscrew the priming chamber valve (3c) as follows:
1. Remove the cover (L) from the priming chamber.
2. Remove the valve tube (R) with the valve (3c).
3. Unscrew the valve (3c) from the valve tube.

Fig. 43 Priming chamber valve

9.3.3 Unscrewing suction and discharge valves/cleaning valves
1. Unscrew the suction and discharge valves.
2. Dismantle the inner valve parts:
 • Standard DN 4/DN 8 valve:
 – Carefully push out the inner valve part using a thin wire nail (or paper clip) in the flow direction (see arrow on the valve body).
 – Dismantle the inner parts: seat (4r), O-ring (1r), balls (3r), ball cages (2r).

Fig. 44 Standard DN 4/DN 8 valve

 • Spring-loaded DN 4/DN 8 valve:
 – Unscrew the valve cover.
 – Dismantle the inner parts (as shown in fig. 45).

Fig. 45 Spring-loaded DN 4 valve / spring-loaded DN 8 valve

3. Clean all parts.
If faulty parts are detected, proceed as follows:
 – Replace the valve (for stainless-steel valves: inner valve parts).
 For contents and order numbers of the spare parts kits, contact Grundfos Alldos.
4. Re-assemble and refit the valve.
5. Remove the deaeration cartridge (1p, 2p, 3p) under the discharge valve from the dosing head using a pair of tweezers.
 – Dismantle the cartridge.
 – Clean the cartridge.
If faulty parts are detected, proceed as follows:
 – Replace the deaeration cartridge.
 For contents and order numbers of the spare parts kits, contact Grundfos Alldos.
 – Re-assemble the cartridge.
6. Refit all parts.

Fig. 46 Standard DN 4/DN 8 valve

The O-rings must be correctly placed in the specified groove.

Caution
*Observe the flow direction (indicated by an arrow)!
Only tighten the valve by hand.*
9.4 Replacing the diaphragm

Note If possible, rinse the dosing head, e.g. by supplying it with water.

9.4.1 Switching off the pump
1. While the pump is running, set the stroke-length adjustment knob to 100 %.
2. Switch off the pump and disconnect it from the power supply.
3. Depressurise the system.
4. Take suitable steps to ensure that the returning dosing medium is safely collected.

9.4.2 Replacing the diaphragm
See fig. 47 or 48.
1. Loosen the four screws (1q + 2q) on the dosing head (2).
2. Remove the dosing head (2).
3. Unscrew the diaphragm (Q) counter-clockwise.
 - For pumps without Plus³ system: Replace the sealing diaphragm (3q), intermediate ring (4q) and support disk (5q).
4. Screw in the new diaphragm (Q).
5. Start/stop the pump briefly so that the diaphragm is set to the back dead point (end of suction stroke).
6. Replace the dosing head (2) and cross-tighten the screws (1q + 2q).
 Maximum torque:
 - DMI 0.3 - DMI 6.0: 2.1 Nm.
 - DMI 9.0 - DMI 18: 2.5 Nm.
7. Vent and start up the dosing pump.

 After initial start-up and after each time the diaphragm is changed, tighten the dosing head screws.

 After approximately 6-10 operating hours or two days, cross-tighten the dosing head screws using a torque wrench.

 Maximum torque:
 - DMI 0.3 - DMI 6.0: 2.1 Nm.
 - DMI 9.0 - DMI 18: 2.5 Nm.

![Fig. 47](https://example.com/image1)
Fig. 47 Replacing diaphragm without Plus³ system

![Fig. 48](https://example.com/image2)
Fig. 48 Replacing diaphragm with Plus³ system
10. Fault finding chart

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dosing pump does not run.</td>
<td>a) Not connected to the mains.</td>
<td>Connect the power supply cable.</td>
</tr>
<tr>
<td></td>
<td>b) Incorrect mains voltage.</td>
<td>Switch off the pump. Check voltage and motor. If the motor is faulty, return the pump for repair.</td>
</tr>
<tr>
<td></td>
<td>c) Electrical failure.</td>
<td>Return the pump for repair.</td>
</tr>
<tr>
<td>2. Dosing pump does not suck in.</td>
<td>a) Leaking suction line.</td>
<td>Replace or seal the suction line.</td>
</tr>
<tr>
<td></td>
<td>b) Cross-section of the suction line too small or suction line too long.</td>
<td>Check with Grundfos Alidos specification.</td>
</tr>
<tr>
<td></td>
<td>c) Clogged suction line.</td>
<td>Rinse or replace the suction line.</td>
</tr>
<tr>
<td></td>
<td>d) Foot valve covered by sediment.</td>
<td>Suspend the suction line from a higher position.</td>
</tr>
<tr>
<td></td>
<td>e) Buckled suction line.</td>
<td>Install the suction line correctly. Check for damage.</td>
</tr>
<tr>
<td></td>
<td>f) Crystalline deposits in the valves.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>g) Diaphragm broken or diaphragm tappet torn out.</td>
<td>Replace the diaphragm.</td>
</tr>
<tr>
<td></td>
<td>h) Empty dosing tank.</td>
<td>Fill the dosing tank.</td>
</tr>
<tr>
<td>3. Dosing pump does not dose.</td>
<td>a) Air in the suction line and dosing head.</td>
<td>Fill the dosing head and suction line.</td>
</tr>
<tr>
<td></td>
<td>b) Viscosity or density of medium too high.</td>
<td>Check the installation.</td>
</tr>
<tr>
<td></td>
<td>c) Crystalline deposits in the valves.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>d) Valves not correctly assembled.</td>
<td>Assemble the inner valve parts in the right order and check or possibly correct the flow direction.</td>
</tr>
<tr>
<td></td>
<td>e) Injection unit blocked.</td>
<td>Check and possibly correct the flow direction, or remove the obstruction.</td>
</tr>
<tr>
<td></td>
<td>f) Incorrect installation of lines and peripheral equipment.</td>
<td>Check the lines for free passage and correct installation.</td>
</tr>
<tr>
<td></td>
<td>g) Empty dosing tank.</td>
<td>Fill the dosing tank.</td>
</tr>
<tr>
<td></td>
<td>h) Sealing elements not chemically resistant.</td>
<td>Replace sealing elements.</td>
</tr>
</tbody>
</table>
Fault

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Dosing flow of the pump is inaccurate.</td>
<td>a) Dosing head not fully deaerated.</td>
<td>Repeat the deaeration.</td>
</tr>
<tr>
<td></td>
<td>b) Degassing medium.</td>
<td>Check the installation.</td>
</tr>
<tr>
<td></td>
<td>c) Parts of the valves covered in dirt or incrusted.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>d) Counter-pressure fluctuations.</td>
<td>Install a pressure-loading valve and a pulsation damper, if necessary.</td>
</tr>
<tr>
<td></td>
<td>e) Suction lift fluctuations.</td>
<td>Keep the suction level constant.</td>
</tr>
<tr>
<td></td>
<td>f) Siphon effect (inlet pressure higher than counter pressure).</td>
<td>Install a pressure-loading valve.</td>
</tr>
<tr>
<td></td>
<td>g) Leaking or porous suction line or discharge line.</td>
<td>Replace the suction line or discharge line.</td>
</tr>
<tr>
<td></td>
<td>h) Parts in contact with the medium are not resistant to it.</td>
<td>Replace with resistant materials.</td>
</tr>
<tr>
<td></td>
<td>i) Dosing diaphragm worn (incipient tears).</td>
<td>Replace the diaphragm. Also observe the maintenance instructions.</td>
</tr>
<tr>
<td></td>
<td>j) Variation of the dosing medium (density, viscosity).</td>
<td>Check the concentration. Use an agitator, if necessary.</td>
</tr>
<tr>
<td>5. Liquid leaks out of the hole in the intermediate flange between the pump and the dosing head.</td>
<td>a) A diaphragm leakage has occurred.</td>
<td>Replace the diaphragm.</td>
</tr>
</tbody>
</table>

Note
For further error signals for the control unit, refer to the relevant section.
11. Dosing curves

The dosing curves apply to:
- water as dosing medium
- suction line with foot valve, suction lift of 0.5 m WC
- zero point of the dosing pump at a counter pressure of 3 bar.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Dosing flow</td>
</tr>
<tr>
<td>h</td>
<td>Stroke length</td>
</tr>
</tbody>
</table>

Fig. 49 DMI 3.0-10 (50 Hz)

Fig. 50 DMI 3.0-10 (60 Hz)

Fig. 51 DMI 0.8-16 / DMI 1.0-10 (50 Hz)

Fig. 52 DMI 0.8-16 / DMI 1.0-10 (60 Hz)

Fig. 53 DMI 1.1-16 / DMI 1.6-10 (50 Hz)
Fig. 60 DMI 4.0-8 (60 Hz)

Fig. 61 DMI 5.0-6 (50 Hz)

Fig. 62 DMI 5.0-6 (60 Hz)

Fig. 63 DMI 6.0-8 (50 Hz)

Fig. 64 DMI 6.0-8 (60 Hz)

Fig. 65 DMI 9.0-6 (50 Hz)
12. Disposal

This product or parts of it must be disposed of in an environmentally sound way:
1. Use appropriate waste collection services.
2. If this is not possible, contact the nearest Grundfos or Grundfos Alldos company or service workshop.
Safety declaration

Please copy, fill in and sign this sheet and attach it to the pump returned for service.

We hereby declare that this product is free from hazardous chemicals, biological and radioactive substances:

Product type: ____________________________

Model number: __________________________

No media or water: _________________________

A chemical solution, name: _____________________

(see pump nameplate)

Fault description

Please make a circle around the damaged part.

In the case of an electrical or functional fault, please mark the cabinet.

Please give a short description of the fault:

_________________ _________________

Date and signature

Company stamp
Being responsible is our foundation
Thinking ahead makes it possible
Innovation is the essence