SMART Digital - DDA
Installation and operating instructions
GB Declaration of Conformity

We, Grundfos Alldos, declare under our sole responsibility that the products DDA, DDC and DDE, to which this declaration relates, are in conformity with these Council directives on the approximation of the laws of the EC member states:

* Only for products with operating voltage > 50 VAC or >75 VDC.

Pfinztal, 1 November 2010

Ulrich Stemick
Technical Director
Grundfos Water Treatment GmbH
Reetzstr. 85, D-76327 Pfinztal, Germany

Person authorised to compile technical file and empowered to sign the EC declaration of conformity.
Installation and operating instructions

Original installation and operating instructions.

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Safety instructions</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Identification of safety instructions in these instructions</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Qualification and training of personnel</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Safety instructions for the operator/user</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Safety of the system in the event of a failure in the dosing pump</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Dosing chemicals</td>
<td>5</td>
</tr>
<tr>
<td>2. General</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Applications</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Improper operating methods</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Warranty</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Nameplate</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Type key</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Device overview</td>
<td>8</td>
</tr>
<tr>
<td>3. Technical data / dimensions</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Technical data</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>4. Assembly and installation</td>
<td>12</td>
</tr>
<tr>
<td>4.1 Pump assembly</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1 Requirements</td>
<td>12</td>
</tr>
<tr>
<td>4.1.2 Align and install mounting plate</td>
<td>12</td>
</tr>
<tr>
<td>4.1.3 Engage pump in mounting plate</td>
<td>12</td>
</tr>
<tr>
<td>4.1.4 Adjusting control cube position</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Hydraulic connection</td>
<td>13</td>
</tr>
<tr>
<td>4.3 Electrical connection</td>
<td>14</td>
</tr>
<tr>
<td>5. Commissioning</td>
<td>16</td>
</tr>
<tr>
<td>5.1 Setting the menu language</td>
<td>16</td>
</tr>
<tr>
<td>5.2 Deaerating the pump</td>
<td>17</td>
</tr>
<tr>
<td>5.3 Calibrating the pump</td>
<td>17</td>
</tr>
<tr>
<td>6. Operation</td>
<td>19</td>
</tr>
<tr>
<td>6.1 Control elements</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Display and symbols</td>
<td>19</td>
</tr>
<tr>
<td>6.2.1 Navigation</td>
<td>19</td>
</tr>
<tr>
<td>6.2.2 Operating states</td>
<td>19</td>
</tr>
<tr>
<td>6.2.3 Sleep mode (energy-saving mode)</td>
<td>19</td>
</tr>
<tr>
<td>6.2.4 Overview of display symbols</td>
<td>20</td>
</tr>
<tr>
<td>6.3 Main menus</td>
<td>21</td>
</tr>
<tr>
<td>6.3.1 Operation</td>
<td>21</td>
</tr>
<tr>
<td>6.3.2 Info</td>
<td>21</td>
</tr>
<tr>
<td>6.3.3 Alarm</td>
<td>21</td>
</tr>
<tr>
<td>6.3.4 Setup</td>
<td>21</td>
</tr>
<tr>
<td>6.4 Operation modes</td>
<td>22</td>
</tr>
<tr>
<td>6.4.1 Manual</td>
<td>22</td>
</tr>
<tr>
<td>6.4.2 Pulse</td>
<td>22</td>
</tr>
<tr>
<td>6.4.3 Analog 0/4-20 mA</td>
<td>23</td>
</tr>
<tr>
<td>6.4.4 Batch (pulse-based)</td>
<td>24</td>
</tr>
<tr>
<td>6.4.5 Dosing timer, cycle</td>
<td>25</td>
</tr>
<tr>
<td>6.4.6 Dosing timer, week</td>
<td>25</td>
</tr>
<tr>
<td>6.5 Analog output</td>
<td>26</td>
</tr>
<tr>
<td>6.6 SlowMode</td>
<td>26</td>
</tr>
<tr>
<td>6.7 FlowControl</td>
<td>27</td>
</tr>
<tr>
<td>6.8 Pressure monitoring</td>
<td>28</td>
</tr>
<tr>
<td>6.8.1 Pressure setting ranges</td>
<td>28</td>
</tr>
<tr>
<td>6.8.2 Calibration of pressure sensor</td>
<td>28</td>
</tr>
<tr>
<td>6.9 Flow measurement</td>
<td>29</td>
</tr>
<tr>
<td>6.10 AutoFlowAdapt</td>
<td>29</td>
</tr>
<tr>
<td>6.11 Auto deaeration</td>
<td>29</td>
</tr>
<tr>
<td>6.12 Key lock</td>
<td>30</td>
</tr>
<tr>
<td>6.13 Display Setup</td>
<td>30</td>
</tr>
<tr>
<td>6.13.1 Units</td>
<td>30</td>
</tr>
<tr>
<td>6.13.2 Additional display</td>
<td>30</td>
</tr>
<tr>
<td>6.14 Time/date</td>
<td>31</td>
</tr>
<tr>
<td>6.15 Bus communication</td>
<td>31</td>
</tr>
<tr>
<td>6.16 Inputs/outputs</td>
<td>31</td>
</tr>
<tr>
<td>6.16.1 Relay outputs</td>
<td>31</td>
</tr>
<tr>
<td>6.16.2 External stop</td>
<td>32</td>
</tr>
<tr>
<td>6.16.3 Empty and low-level signals</td>
<td>32</td>
</tr>
<tr>
<td>6.17 Basic settings</td>
<td>32</td>
</tr>
<tr>
<td>7. Service</td>
<td>33</td>
</tr>
<tr>
<td>7.1 Service system</td>
<td>33</td>
</tr>
<tr>
<td>7.2 Perform service</td>
<td>33</td>
</tr>
<tr>
<td>7.2.1 Dosing head overview</td>
<td>34</td>
</tr>
<tr>
<td>7.2.2 Dismantling the diaphragm and valves</td>
<td>34</td>
</tr>
<tr>
<td>7.2.3 Reassembling the diaphragm and valves</td>
<td>34</td>
</tr>
<tr>
<td>7.3 Resetting the service system</td>
<td>34</td>
</tr>
<tr>
<td>7.4 Repairs</td>
<td>34</td>
</tr>
<tr>
<td>8. Faults</td>
<td>35</td>
</tr>
<tr>
<td>8.1 List of faults</td>
<td>36</td>
</tr>
<tr>
<td>8.1.1 Faults with error message</td>
<td>36</td>
</tr>
<tr>
<td>8.1.2 General faults</td>
<td>38</td>
</tr>
<tr>
<td>9. Disposal</td>
<td>38</td>
</tr>
</tbody>
</table>

Warning

Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.
1. Safety instructions
These installation and operating instructions contain general instructions that must be observed during installation, operation and maintenance of the pump. It must therefore be read by the installation engineer and the relevant qualified operator prior to installation and start-up, and must be available at the installation location at all times.

1.1 Identification of safety instructions in these instructions
The safety instructions are identified by the following symbols:

Warning
If these safety instructions are not observed, it may result in personal injury!

Caution
If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Note
Notes or instructions that make the job easier and ensure safe operation.

1.2 Qualification and training of personnel
The personnel responsible for the installation, operation and service must be appropriately qualified for these tasks. Areas of responsibility, levels of authority and the supervision of the personnel must be precisely defined by the operator. If necessary, the personnel must be trained appropriately.

Risks of not observing the safety instructions
Non-observance of the safety instructions may have dangerous consequences for the personnel, the environment and the pump and may result in the loss of any claims for damages. It may lead to the following hazards:
• Personal injury from exposure to electrical, mechanical and chemical influences.
• Damage to the environment and personal injury from leakage of harmful substances.

1.3 Safety instructions for the operator/user
The safety instructions described in these instructions, existing national regulations on health protection, environmental protection and for accident prevention and any internal working, operating and safety regulations of the operator must be observed. Information attached to the pump must be observed. Leakages of dangerous substances must be disposed of in a way that is not harmful to the personnel or the environment. Damage caused by electrical energy must be prevented, see the regulations of the local electricity supply company.

Warning
If these safety instructions are not observed, it may result in personal injury!

Caution
If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Note
Notes or instructions that make the job easier and ensure safe operation.

Caution
Before any work to the pump, the pump must be in the 'Stop' operational state or be disconnected from the mains. The system must be pressureless!

Only original accessories and original spare parts should be used. Using other parts can result in exemption from liability for any resulting consequences.

1.4 Safety of the system in the event of a failure in the dosing pump
The dosing pump was designed according to the latest technologies and is carefully manufactured and tested. If it fails regardless of this, the safety of the overall system must be ensured. Use the relevant monitoring and control functions for this.

Caution
Make sure that any chemicals that are released from the pump or any damaged lines do not cause damage to system parts and buildings.

The installation of leak monitoring solutions and drip trays is recommended.
1.5 Dosing chemicals

Warning
Before switching the supply voltage back on, the dosing lines must be connected in such a way that any chemicals in the dosing head cannot spray out and put people at risk.

The dosing medium is pressurised and can be harmful to health and the environment.

Warning
When working with chemicals, the accident prevention regulations applicable at the installation site should be applied (e.g. wearing protective clothing).

Observe the chemical manufacturer’s safety data sheets and safety instructions when handling chemicals!

Warning
If the diaphragm leaks or is broken, dosing liquid will escape from the discharge opening on the dosing head (see fig. 3).

Take suitable precautions to prevent harm to health and damage to property from escaping dosing liquid!

Check daily whether liquid is escaping from the discharge opening!

Changing the diaphragm, see section 7. Service.

Caution
A deaeration hose, which is routed into a container, e.g. a drip tray, must be connected to the deaeration valve.

The dosing medium must be in liquid aggregate state!

Caution
Observe the freezing and boiling points of the dosing medium!

The resistance of the parts that come into contact with the dosing medium, such as the dosing head, valve ball, gaskets and lines, depends on the medium, media temperature and operating pressure.

Ensure that parts in contact with the dosing media are resistant to the dosing medium under operating conditions, see data booklet!

Should you have any questions regarding the material resistance and suitability of the pump for specific dosing media, please contact Grundfos.

2. General

The DDA dosing pump is a self-priming diaphragm pump. It consists of a housing with stepper motor and electronics, a dosing head with diaphragm and valves and the control cube.

Excellent dosing features of the pump:
• Optimal intake even with degassing media, as the pump always works at full suction stroke volume.
• Continuous dosing, as the medium is sucked up with a short suction stroke, regardless of the current dosing flow, and dosed with the longest possible dosing stroke.

2.1 Applications

The pump is suitable for liquid, non-abrasive, non-flammable and non-combustible media strictly in accordance with the instructions in these installation and operating instructions.

Areas of application
• Drinking water treatment
• Wastewater treatment
• Swimming pool water treatment
• Boiler water treatment
• CIP (Clean-In-Place)
• Cooling water treatment
• Process water treatment
• Wash plants
• Chemical industry
• Ultrafiltration processes and reverse osmosis
• Irrigation
• Paper and pulp industry
• Food and beverage industries

2.2 Improper operating methods

The operational safety of the pump is only guaranteed if it is used in accordance with section 2.1 Applications.

Warning
Other applications or the operation of pumps in ambient and operating conditions, which are not approved, are considered improper and are not permitted. Grundfos cannot be held liable for any damage resulting from incorrect use.

Warning
The pump is NOT approved for operation in potentially explosive areas!

Warning
A sunscreen is required for outdoor installation!
2.3 Warranty
A guarantee claim in accordance with our general terms of sale and delivery is only valid if the following requirements are fulfilled:
- The pump is used in accordance with the information within this manual.
- The pump is not dismantled or incorrectly handled.
- The maintenance is carried out by authorised and qualified personnel.
- Original spare parts are used for repairs during maintenance.

2.4 Nameplate

![Nameplate Diagram]

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Voltage</th>
<th>Frequency</th>
<th>Max. dosing flow</th>
<th>Enclosure class</th>
<th>Mark of approval, CE mark, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Nameplate
2.5 Type key

The type key is used to identify the precise pump and is not used for configuration purposes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Example</th>
<th>DDA 7.5-16 AR-PP/V-C-F-31U2UF</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. flow [l/h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. pressure [bar]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control variant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>AR with FlowControl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCM</td>
<td>FC with integrated flow measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing head material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>PVC (polyvinyl chloride) (PVC dosing heads only up to 10 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>PVDF (polyvinylidene fluoride)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel DIN 1.4401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC-P3</td>
<td>PVC with Plus³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasket material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve ball material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel DIN 1.4401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control cube position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Front-mounted (can be changed to the right or left)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 x 100-240 V, 50/60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Spring-loaded (HV version)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction/discharge side connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2U2</td>
<td>Hose, 4/6 mm, 6/9 mm, 6/12 mm, 9/12 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U7U7</td>
<td>Hose 1/8" x 1/4"; 0.17" x 1/4"; 1/4" x 3/8"; 3/8" x 1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Threaded Rp 1/4", female (stainless steel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VV</td>
<td>Threaded 1/4" NPT, female (stainless steel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>No connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I001</td>
<td>Hose, 4/6 mm (up to 7.5 l/h, 16 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I002</td>
<td>Hose, 9/12 mm (up to 60 l/h, 13 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I003</td>
<td>Hose 0.17" x 1/4" (up to 7.5 l/h, 16 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I004</td>
<td>Hose, 3/8" x 1/2" (up to 60 l/h, 10 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power plug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>EU (Schuko)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>USA, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Australia, New Zealand, Taiwan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Argentina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Grundfos Alidos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Including: 2 pump connections, foot valve, injection unit, 6 m PE discharge hose, 2 m PVC suction hose, 2 m PVC deaeration hose (4/6 mm)
2.6 Device overview

Fig. 2 Front view of the pump

Fig. 3 Rear view of the pump
3. Technical data / dimensions

3.1 Technical data

<table>
<thead>
<tr>
<th>Data</th>
<th>DDA pump type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.5 - 16</td>
</tr>
<tr>
<td>Turndown ration (setting range)</td>
<td>3000</td>
</tr>
<tr>
<td>Max. dosing flow</td>
<td>7.5</td>
</tr>
<tr>
<td>[l/h]</td>
<td>2.0</td>
</tr>
<tr>
<td>Max. dosing flow with SlowMode 50 %</td>
<td>3.75</td>
</tr>
<tr>
<td>[l/h]</td>
<td>1.00</td>
</tr>
<tr>
<td>Max. dosing flow with SlowMode 25 %</td>
<td>1.88</td>
</tr>
<tr>
<td>[l/h]</td>
<td>0.50</td>
</tr>
<tr>
<td>Min. dosing flow</td>
<td>0.0025</td>
</tr>
<tr>
<td>[l/h]</td>
<td>0.0007</td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>16</td>
</tr>
<tr>
<td>[bar]</td>
<td>230</td>
</tr>
<tr>
<td>Max. stroke frequency 1)</td>
<td>190</td>
</tr>
<tr>
<td>[Strokes/min]</td>
<td></td>
</tr>
<tr>
<td>Stroke volume</td>
<td>0.74</td>
</tr>
<tr>
<td>[ml]</td>
<td></td>
</tr>
<tr>
<td>Accuracy of repeatability</td>
<td>±1</td>
</tr>
<tr>
<td>Max. suction lift during operation 2)</td>
<td>6</td>
</tr>
<tr>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>Max. suction lift when priming with wet valves 2)</td>
<td>2</td>
</tr>
<tr>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>Min. pressure difference between suction and discharge side</td>
<td>1</td>
</tr>
<tr>
<td>[bar]</td>
<td>(FC and FCM: 2)</td>
</tr>
<tr>
<td>Max. pressure, suction side</td>
<td>2</td>
</tr>
<tr>
<td>[bar]</td>
<td></td>
</tr>
<tr>
<td>Max. viscosity in SlowMode 25 % with spring-loaded valves 3)</td>
<td>2500</td>
</tr>
<tr>
<td>[mPa s] (= cP)</td>
<td></td>
</tr>
<tr>
<td>Max. viscosity in SlowMode 50 % with spring-loaded valves 3)</td>
<td>1800</td>
</tr>
<tr>
<td>[mPa s] (= cP)</td>
<td></td>
</tr>
<tr>
<td>Max. viscosity without SlowMode with spring-loaded valves 3)</td>
<td>600</td>
</tr>
<tr>
<td>[mPa s] (= cP)</td>
<td></td>
</tr>
<tr>
<td>Max. viscosity without spring-loaded valves 3)</td>
<td>50</td>
</tr>
<tr>
<td>[mPa s] (= cP)</td>
<td></td>
</tr>
<tr>
<td>Min. diameter of hose/pipe on suction/discharge side 2) 4)</td>
<td>4</td>
</tr>
<tr>
<td>[mm]</td>
<td></td>
</tr>
<tr>
<td>Min. diameter of hose/pipe on suction side for highly viscous media (HV) 4)</td>
<td>9</td>
</tr>
<tr>
<td>[mm]</td>
<td></td>
</tr>
<tr>
<td>Min. diameter of hose/pipe on discharge side for highly viscous media (HV) 4)</td>
<td>9</td>
</tr>
<tr>
<td>[mm]</td>
<td></td>
</tr>
<tr>
<td>Max. media temperature</td>
<td>45</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>Min. media temperature</td>
<td>-10</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>Max. ambient temperature</td>
<td>45</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>Min. ambient temperature</td>
<td>0</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>Max. storage temperature</td>
<td>70</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>Min. storage temperature</td>
<td>-20</td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
</tr>
</tbody>
</table>
Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Voltage [V]</th>
<th>Length of mains cable [m]</th>
<th>Max. current consumption (100 V) [A]</th>
<th>Max. current consumption (230 V) [A]</th>
<th>Max. power consumption P_1 [W]</th>
<th>Enclosure class</th>
<th>Electrical safety class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100-240 V, 50-60 Hz</td>
<td>1.5</td>
<td>8</td>
<td>25</td>
<td>18 / 24<sup>5)</sup></td>
<td>IP 65, Nema 4X</td>
<td>II</td>
</tr>
</tbody>
</table>

Electrical data

- Max. current consumption (100 V) [A]: 8
- Max. current consumption (230 V) [A]: 25
- Max. power consumption P_1 [W]: 18 / 24⁵⁾
- Enclosure class: IP 65, Nema 4X
- Electrical safety class: II

Signal input

- Max. load for level input: 12 V, 5 mA
- Max. load for pulse input: 12 V, 5 mA
- Max. load for external stop: 12 V, 5 mA
- Min. pulse length [ms]: 5
- Max. pulse frequency [Hz]: 100
- Impedance at 0/4-20 mA analog input [Ω]: 15
- Max. resistance in level circuit [Ω]: 1000
- Max. resistance in pulse circuit [Ω]: 1000

Signal output

- Max. ohmic load on relay output [A]: 0.5
- Max. voltage on relay output [V]: 30 VDC / 30 VAC
- Impedance at 0/4-20 mA analog output [Ω]: 500

Weight/ size

<table>
<thead>
<tr>
<th>Weight/ size</th>
<th>Weight (PVC, PP, PVDF) [kg]</th>
<th>Weight (stainless steel) [kg]</th>
<th>Diaphragm diameter [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4</td>
<td>3.2</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>3.2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>4.0</td>
<td>74</td>
</tr>
</tbody>
</table>

Sound pressure level

- Max. sound pressure level [dB(A)]: 60

Approvals

- CE, CSA-US, NSF61, GHOST, C-Tick

¹⁾ The maximum stroke frequency varies depending on calibration
²⁾ Data is based on measurements with water
³⁾ Maximum suction lift: 1 m, dosing flow reduced (approx. 30 %)
⁴⁾ Length of suction line: 1.5 m / length of discharge line: 10 m (at max. viscosity)
⁵⁾ With E-Box.
3.2 Dimensions

Fig. 4 Dimensional drawing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA 7.5 - 16</td>
<td>280</td>
<td>251</td>
<td>196</td>
<td>46.5</td>
<td>24</td>
</tr>
<tr>
<td>DDA 12-10/17-7</td>
<td>280</td>
<td>251</td>
<td>200.5</td>
<td>39.5</td>
<td>24</td>
</tr>
<tr>
<td>DDA 30-4</td>
<td>295</td>
<td>267</td>
<td>204.5</td>
<td>35.5</td>
<td>38.5</td>
</tr>
</tbody>
</table>
4. Assembly and installation

4.1 Pump assembly

The pump is delivered with a mounting plate. The mounting plate can be mounted vertically e.g. on a wall or horizontally e.g. on a tank. It takes just a few quick steps to firmly secure the pump to the mounting plate by means of a slot mechanism. The pump can easily be released from the mounting plate for maintenance.

4.1.1 Requirements

- The mounting surface must be stable and must not vibrate.
- Dosing must flow upwards vertically.

4.1.2 Align and install mounting plate

- **Vertical installation**: Mounting plate slot mechanism must be above.
- **Horizontal installation**: Mounting plate slot mechanism must be opposite the dosing head.
- The mounting plate can be used as a drill template, please see fig. 4 for drill hole distances.

Fig. 5 Locate mounting plate

Warning

Make sure that you do not damage any cables and lines during installation!

1. Indicate drill holes.
2. Drill holes.
3. Secure mounting plate using four screws, diameter 5 mm, to the wall, on the bracket or the tank.

Fig. 6 Engaging the pump

4.1.3 Engage pump in mounting plate

1. Attach the pump to the mounting plate support clamps and slide under slight pressure until it engages.

Fig. 7 Adjusting control cube

4.1.4 Adjusting control cube position

The control cube is fitted to the front of the pump on delivery. It can be turned by 90° so that the user can select to operate the pump from the right or left side.

The enclosure class (IP65 / Nema 4X) and shock protection are only guaranteed if the control cube is installed correctly!

Caution

Pump must be disconnected from the power supply!

1. Carefully remove both protective caps on the control cube using a thin screwdriver.
2. Loosen screws.
3. Carefully lift off control cube only so far from the pump housing that no tensile stress is produced on the flat band cable.
4. Turn control cube by 90° and re-attach.
 - Make sure the O-ring is secure.
5. Tighten screws slightly and attach protective caps.
4.2 Hydraulic connection

Warning
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!

The dosing head may contain water from the factory check!

When dosing media which should not come into contact with water, another medium must be dosed beforehand!

Faultless function can only be guaranteed in conjunction with lines supplied by Grundfos!

Caution
The lines used must comply with the pressure limits as per section 3.1 Technical data!

Important information on installation
- Observe suction lift and line diameter, see section 3.1 Technical data.
- Shorten hoses at right angles.
- Ensure that there are no loops or kinks in the hoses.
- Keep suction line as short as possible.
- Route suction line up towards the suction valve.
- Installing a filter in the suction line protects the entire installation against dirt and reduces the risk of leakage.
- Only control variant FC/FCM: For discharge quantities < 1 l/h we recommend the use of an additional spring-loaded valve (approx. 3 bar) on the discharge side for the safe generation of the necessary differential pressure.

Caution

Pressure differential between suction and discharge side must be at least 1 bar / 14.5 psi!

Tighten up the dosing head screws once before commissioning and after 2-5 operating hours at 3 Nm.

Hose connection procedure
1. Push union nut and tensioning ring across hose.
2. Push cone part fully into hose, see fig. 8.
3. Attach cone part with hose to corresponding pump valve.
4. Tighten union nut manually.
 – do not use tools!
5. Tighten up union nuts after 2-5 operating hours if using PTFE gaskets!
6. Attach deaeration hose to the corresponding connection (see fig. 3) and run into a container or a collecting tray.

Note
Pressure differential between suction and discharge side must be at least 1 bar / 14.5 psi!

Caution
Tighten up the dosing head screws once before commissioning and after 2-5 operating hours at 3 Nm.

Installation example
The pump offers various installation options. In the picture below, the pump is installed in conjunction with a suction line, level switch and multifunction valve on a Grundfos tank.

Fig. 8 Hydraulic connection

Fig. 9 Installation example
4.3 Electrical connection

Warning
The enclosure class (IP65 / Nema 4X) is only guaranteed if plugs or protective caps are correctly installed!

Warning
The pump can start automatically when the mains voltage is switched on!
Do not manipulate mains plug or cable!

The rated voltage of the pump, see section 2.4 Nameplate, must conform to local conditions.

Signal connections

![Wiring diagram of the electrical connections](image_url)

Fig. 10 Wiring diagram of the electrical connections
Analog, external stop and pulse input

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Plug type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>GND/ (-) mA</td>
<td>(+) mA mA</td>
</tr>
<tr>
<td>External stop</td>
<td>GND</td>
<td>X Pulse</td>
</tr>
<tr>
<td>Pulse</td>
<td>GND</td>
<td>X Pulse</td>
</tr>
</tbody>
</table>

Level signals: empty and low-level signal

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Plug type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-level signal</td>
<td>X GND Pulse</td>
<td></td>
</tr>
<tr>
<td>Empty signal</td>
<td>X GND Pulse</td>
<td></td>
</tr>
</tbody>
</table>

GENIbus, analog output

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Plug type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIbus</td>
<td>+30 V TXD RXD GND Bus</td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td>(+) mA GND/ (-) mA mA</td>
<td>mA signal</td>
</tr>
</tbody>
</table>

Relay outputs

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Plug type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>X X Pulse</td>
<td></td>
</tr>
<tr>
<td>Relay 2</td>
<td>X X Pulse</td>
<td></td>
</tr>
</tbody>
</table>

FlowControl signal connection

![FlowControl connection diagram](image)
5. Commissioning

5.1 Setting the menu language
For description of control elements, see Section 6.

1. Turn click wheel to highlight the cog symbol.

2. Press the click wheel to open the ‘Setup’ menu.

3. Turn the click wheel to highlight the ‘Language’ menu.

4. Press the click wheel to open the ‘Language’ menu.

5. Turn the click wheel to highlight the desired language.

6. Press the click wheel to select the highlighted language.

7. Press the click wheel again to confirm the ‘Confirm settings’ prompt and apply the setting.

Fig. 12 Set menu language
5.2 Deaerating the pump

Warning

The deaeration hose must be connected correctly and inserted into a suitable tank!

1. Open deaeration screw by approximately half a turn.
2. Press and hold down the 100 % key (deaeration key) until liquid flows continuously without any bubbles from the deaeration hose.
3. Close deaeration screw.

Note

Press the 100 % key and simultaneously turn the clickwheel clockwise to increase the duration of the process to up to 300 seconds. After setting the seconds, do not press the key any longer.

5.3 Calibrating the pump

The pump is calibrated in the factory for media with a viscosity similar to water at maximum pump backpressure (see section 3.1 Technical data).

If the pump is operated with a backpressure that deviates or if dosing a medium whose viscosity deviates, the pump must be calibrated.

For pumps with FCM control variant, it is not necessary to calibrate the pump if there is deviating or fluctuating backpressure as long as the 'AutoFlowAdapt' function has been enabled (see section 6.10 AutoFlowAdapt).

Requirements

- The hydraulics and electrics of the pump are connected (see section 4. Assembly and installation).
- The pump is integrated into the dosing process under operating conditions.
- The dosing head and suction hose are filled with dosing medium.
- The pump has been deaerated.
Calibration process - example for DDA 7.5 - 16

1. Fill a measuring beaker with dosing medium.
 Recommended filling volumes:

<table>
<thead>
<tr>
<th>DDA type</th>
<th>7.5 - 16</th>
<th>12-10</th>
<th>17-7</th>
<th>30-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium V₁</td>
<td>0.3 l</td>
<td>0.5 l</td>
<td>1.0 l</td>
<td>1.5 l</td>
</tr>
</tbody>
</table>

2. Read off and note down the fill volume V₁ (e.g. 300 ml).

3. Place the suction hose in the measuring beaker.

4. Start the calibration process in the 'Setup > Calibration' menu.

5. The pump executes 200 dosing strokes and displays the factory calibration value (e.g. 125 ml).

6. Remove the suction hose from the measuring beaker and check the remaining volume V₂ (e.g. 170 ml).

7. From V₁ and V₂, calculate the actual dosed volume V_d = V₁ - V₂ (e.g. 300 ml - 170 ml = 130 ml).

8. Set and apply V_d in the calibration menu.
 - The pump is calibrated.
6. Operation

6.1 Control elements
The pump control panel includes a display and the following control elements.

![Control panel diagram]

Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/stop key</td>
<td>Starting and stopping the pump.</td>
</tr>
<tr>
<td>100 % key</td>
<td>The pump doses at maximum flow regardless of the operation mode.</td>
</tr>
</tbody>
</table>

Click wheel
The click wheel is used to navigate through the menus, select settings and confirm them.

Turning the clickwheel clockwise moves the cursor clockwise in increments in the display. Turning the clickwheel anti-clockwise moves the cursor anti-clockwise.

6.2 Display and symbols

6.2.1 Navigation
In the 'Info', 'Alarm' and 'Setup' main menus, the options and submenus are displayed in the rows below. Use the 'Back' symbol to return to the higher menu level. The scroll bar at the right edge of the display indicates that there are further menu items which are not shown.

The active symbol (current cursor position) flashes. Press the click wheel to confirm your selection and open the next menu level. The active main menu is displayed as text, the other main menus are displayed as symbols. The position of the cursor is highlighted in black in the sub-menus.

When you position the cursor on a value and press the click wheel, a value is selected. Turning the clickwheel clockwise increases the value, turning the clickwheel anti-clockwise reduces the value. When you now press the click wheel, the cursor will be released again.

6.2.2 Operating states
The operating state of the pump is indicated by a symbol and display colour.

<table>
<thead>
<tr>
<th>Display</th>
<th>Fault</th>
<th>Operating state</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>-</td>
<td>Stop</td>
</tr>
<tr>
<td>Green</td>
<td>-</td>
<td>Running</td>
</tr>
<tr>
<td>Yellow</td>
<td>Warning</td>
<td>Stop</td>
</tr>
<tr>
<td>Red</td>
<td>Alarm</td>
<td>Stop</td>
</tr>
</tbody>
</table>

6.2.3 Sleep mode (energy-saving mode)
If in the 'Operation' main menu the pump is not operated for 30 seconds, the header disappears. After 2 minutes, the display switches to the 'Operation' main menu and the display brightness is reduced. This state will be cancelled when the pump is operated or a fault occurs.
6.2.4 Overview of display symbols

The following display symbols may appear in the menus.

Fig. 14 Overview of display symbols
6.3 Main menus
The main menus are displayed as symbols at the top of the display. The currently active main menu is displayed as text.

6.3.1 Operation
Status information such as the dosing flow, selected operation mode and operating state is displayed in the ‘Operation’ main menu.

6.3.2 Info
You can find the date, time and information about the active dosing process, various counters, product data and the service system status in the ‘Info’ main menu. The information can be accessed during operation.

The service system can also be reset from here.

Counters
The ‘Info > counters’ menu contains the following counters:

<table>
<thead>
<tr>
<th>Counters</th>
<th>resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Total dosed volume [l] or US gallons</td>
<td></td>
</tr>
<tr>
<td>Operating hours</td>
<td>No</td>
</tr>
<tr>
<td>Accumulated operating hours (pump switched on) [h]</td>
<td></td>
</tr>
<tr>
<td>Motor runtime</td>
<td>No</td>
</tr>
<tr>
<td>Accumulated motor runtime [h]</td>
<td></td>
</tr>
<tr>
<td>Strokes</td>
<td>No</td>
</tr>
<tr>
<td>Accumulated number of dosing strokes</td>
<td></td>
</tr>
<tr>
<td>Power on/off</td>
<td>No</td>
</tr>
<tr>
<td>Accumulated frequency of switching mains voltage on</td>
<td></td>
</tr>
</tbody>
</table>

6.3.3 Alarm
You can view errors in the ‘Alarm’ main menu.

Up to 10 warnings and alarms, together with their date, time and cause, are listed in chronological order. If the list is full, the oldest entry will be overwritten, see Section 8. Faults.

6.3.4 Setup
The ‘Setup’ main menu contains menus for pump configuration. These menus are described in the following sections.

* These submenus are only displayed for specific default settings and control variants. The contents of the ‘Setup’ menu also vary depending on the operation mode.
6.4 Operation modes
Six different operation modes can be set in the ‘Setup > Operation mode’ menu.
• Manual, see section 6.4.1
• Pulse, see section 6.4.2
• Analog 0 - 20 mA, see section 6.4.3
• Analog 4 - 20 mA, see section 6.4.3
• Batch, see section 6.4.4
• Dosing timer, cycle, see section 6.4.5
• Dosing timer, week, see section 6.4.6

6.4.1 Manual
In this operation mode, the pump constantly doses the dosing flow set with the click wheel. The dosing flow is set in l/h or ml/h. The pump automatically switches between the units. Alternatively, the display can be reset to US units (gph).

The setting range depends on the pump type:

<table>
<thead>
<tr>
<th>Type</th>
<th>Setting range*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l/h</td>
</tr>
<tr>
<td>DDA 7.5 - 16</td>
<td>0.0025 - 7.5</td>
</tr>
<tr>
<td>DDA 12-10</td>
<td>0.012 - 12</td>
</tr>
<tr>
<td>DDA 17-7</td>
<td>0.017 - 17</td>
</tr>
<tr>
<td>DDA 30-4</td>
<td>0.03 - 30</td>
</tr>
</tbody>
</table>

* When the SlowMode function is active, the maximum dosing flow is reduced, see section 3.1 Technical data.

6.4.2 Pulse
In this operation mode, the pump doses the set dosing volume for each incoming (potential-free) pulse, e.g. from a water meter. There is no direct connection between incoming pulses and dosing strokes. The pump automatically calculates the optimum stroke frequency for dosing the set volume per pulse.

The calculation is based on:
• the frequency of external pulses
• the set dosing volume/pulse.

The dosing volume per pulse is set in ml/pulse using the click wheel. The setting range for the dosing volume depends on the pump type:

<table>
<thead>
<tr>
<th>Type</th>
<th>Setting range [ml/pulse]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA 7.5 - 16</td>
<td>0.0013 - 12.8</td>
</tr>
<tr>
<td>DDA 12-10</td>
<td>0.0026 - 25.8</td>
</tr>
<tr>
<td>DDA 17-7</td>
<td>0.0027 - 26.8</td>
</tr>
<tr>
<td>DDA 30-4</td>
<td>0.0058 - 58.4</td>
</tr>
</tbody>
</table>

The frequency of incoming pulses is multiplied by the set dosing volume. If the pump receives more pulses than it can process at the maximum dosing flow, it runs at the maximum stroke frequency in continuous operation. Excess pulses will be ignored if the memory function is not enabled.

Memory function
When the ‘Setup > Pulse memory’ function is enabled, up to 65,000 unprocessed pulses can be saved for subsequent processing.

The contents of the memory will be deleted when:

- Switching off the power supply
- By switching the operating mode
- Interruption (e.g. alarm, external stop).

Note
6.4.3 Analog 0/4-20 mA
In this operation mode, the pump doses according to the external analog signal. The dosing volume is proportional to the signal input value in mA.

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Input value</th>
<th>Dosing flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 20 mA</td>
<td>≤ 4.1 mA</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>≥ 19.8 mA</td>
<td>100 %</td>
</tr>
<tr>
<td>0 - 20 mA</td>
<td>≤ 0.1 mA</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>≥ 19.8 mA</td>
<td>100 %</td>
</tr>
</tbody>
</table>

If the input value in operation mode 4-20 mA falls below 2 mA, an alarm is displayed and the pump stops. A cable break or signal transmitter error has occurred. The ‘Cable break’ symbol is displayed in the ‘Signal and error display’ area of the display.

Set analog scaling
Analog scaling refers to the assignment of the current input value to the dosing flow. Analog scaling passes through the two reference points \((I_1 / Q_1)\) and \((I_2 / Q_2)\), which are set in the ‘Setup > Analog scaling’ menu. The dosing flow is controlled according to this setting.

Example 1 (DDA 7.5 - 16)
Analog scaling with positive gradient:

Fig. 19 Analog scaling with pos. gradient

In example 1, the reference points \(I_1 = 6\) mA, \(Q_1 = 1.5\) l/h and \(I_2 = 16\) mA, \(Q_2 = 7.5\) l/h have been set.

From 0 to 6 mA analog scaling is described by a line that passes through \(Q = 0\) l/h, between 6 mA and 16 mA it rises proportionally from 1.5 l/h to 7.5 l/h and from 16 mA onwards it passes through \(Q_2 = 7.5\) l/h.

Example 2 (DDA 7.5-16)
Analog scaling with negative gradient (Operation mode 0 - 20 mA):

Fig. 20 Analog scaling with neg. gradient

In example 2, the reference points \(I_1 = 2\) mA, \(Q_1 = 7.5\) l/h and \(I_2 = 16\) mA, \(Q_2 = 1.3\) l/h have been set.

From 0 to 2 mA analog scaling is described by a line that passes through \(Q = 0\) l/h, between 2 mA and 16 mA it drops proportionally from 7.5 l/h to 1.3 l/h and from 16 mA onwards it passes through \(Q_2 = 1.3\) l/h.
Set analog scaling in the ‘Operation’ menu
Analog scaling can also be modified after a security prompt directly in the ‘Operation’ menu. This is how the dosing flow is directly modified for the current flow input value.

Please observe that changes also have a direct effect on point I₂/Q₂ (see fig. 21)!

Fig. 21 Set analog scaling (‘Operation’ menu)

6.4.4 Batch (pulse-based)
In this operation mode, the pump doses the set batch volume in the set dosing time (t₁).
A batch is dosed with each incoming pulse.

The setting range depends on the pump type:

<table>
<thead>
<tr>
<th>Type</th>
<th>Setting range per batch</th>
<th>Resolution* [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA 7.5 - 16</td>
<td>0.74 - 999</td>
<td>0.0925</td>
</tr>
<tr>
<td>DDA 12-10</td>
<td>1.45 - 999</td>
<td>0.1813</td>
</tr>
<tr>
<td>DDA 17-7</td>
<td>1.55 - 999</td>
<td>0.1938</td>
</tr>
<tr>
<td>DDA 30-4</td>
<td>3.10 - 999</td>
<td>0.3875</td>
</tr>
</tbody>
</table>

* Thanks to the digital motor control, dosing quantities with a resolution of up to 1/8 of the dosing stroke volume can be dosed.

The batch volume (e.g. 75 ml) is set in the ‘Setup > Batch volume’ menu. The minimum dosing time required for this (e.g. 32 seconds) is displayed and can be increased.

Fig. 23 Batch mode

If the batch volume is modified, the dosing time resets to the minimum dosing time.
Signals received during a batch process or an interruption (e.g. alarm, external stop) will be ignored. If the pump is restarted following an interruption, the next batch volume is dosed on the next incoming pulse.

Fig. 24 Batch mode

In the ‘Operation’ menu, the total batch volume (e.g. 75 ml) and the remaining batch volume still to be dosed (e.g. 43 ml) are shown in the display.
6.4.5 Dosing timer, cycle
In this operation mode, the pump doses the set batch volume in regular cycles. Dosing starts when the pump is started after a singular start delay. The setting range for the batch volume corresponds to the values in section 6.4.4 Batch (pulse-based).

![Fig. 25 Dosing timer cycle](image)

t₁	Dosing time
t₂	Start delay
t₃	Cycle time

The cycle time must be longer than the dosing time, otherwise the following dosing will be ignored. In the event of an interruption (e.g. interruption of the mains voltage, external stop), the dosing will be stopped while the time continues running. After suspending the interruption, the pump will continue to dose according to the actual timeline position.

The following settings are required in the ‘Setup > Dos. Timer Cycle’ menu:

![Fig. 26 Dos. Timer Cycle mode](image)

The batch volume to be dosed (e.g. 125 ml) is set in the ‘Setup > Dos. Timer Cycle’ menu. The minimum dosing time required for this (e.g. 1:54) is displayed and can be increased.

![Fig. 27 Dos. Timer Cycle mode](image)

6.4.6 Dosing timer, week
In this operation mode, up to 16 dosing procedures are defined for a week. These dosing procedures may take place regularly on one or several week days. The setting range for the batch volume corresponds to the values in section 6.4.4 Batch (pulse-based).

![Fig. 28 Week timer dosing](image)

If several procedures overlap, the process with the higher dosing flow has priority!

In the event of an interruption (e.g. disconnection of the mains voltage, external stop), the dosing is stopped while the time continues running. After suspending the interruption, the pump continues to dose according to the actual timeline position.

The following settings are required in the ‘Setup > Dos. Timer Week’ menu for each dosing procedure:

![Fig. 29 Setting the timer](image)
The batch volume (e.g. 80.5 ml) is set in the 'Setup > Dos. Timer Week' menu. The minimum dosing time required for this (e.g. 0:34) is displayed and can be increased.

In the Operation mode, the total batch volume (e.g. 80.5 ml) and the remaining batch volume to be dosed is displayed. During breaks in dosing, the time (e.g. 43:32) until the next dosing is displayed.

In the Operation mode, the total batch volume (e.g. 80.5 ml) and the remaining batch volume to be dosed is displayed. During breaks in dosing, the time (e.g. 43:32) until the next dosing is displayed.

6.5 Analog output

The analog output of the pump is parametrised in the 'Setup > Analog output' menu. The following settings are possible:

- Output = Input
- Actual flow
- Backpressure
- Bus control

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Control variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output = Input</td>
<td>The analog input signal is mapped 1:1 to the analog output (e.g. to control several pumps using one signal)</td>
<td>X X X</td>
</tr>
<tr>
<td>Actual flow</td>
<td>Current actual flow</td>
<td>X X* X*</td>
</tr>
<tr>
<td></td>
<td>• 0/4 mA = 0 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 20 mA = 100 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see section 6.8.2 Calibration of pressure sensor</td>
<td></td>
</tr>
<tr>
<td>Backpressure</td>
<td>Backpressure, measured in the dosing head</td>
<td>X X</td>
</tr>
<tr>
<td></td>
<td>• 0/4 mA = 0 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 20 mA = 100 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see section 6.8 Pressure monitoring</td>
<td></td>
</tr>
<tr>
<td>Bus control</td>
<td>Enabled by command in Bus control, see section 6.15 Bus communication</td>
<td>X X X</td>
</tr>
</tbody>
</table>

* Output signal is based on motor speed and pump status (target flow).

Wiring diagram see section 4.3 Electrical connection.

In all modes, the analog output has a range of 4-20 mA. Exception: Operation mode 0-20 mA. Here, the analog output range is 0-20 mA.

6.6 SlowMode

When the 'SlowMode' function is enabled, the pump slows down the suction stroke. The function is enabled in the 'Setup > SlowMode' menu and is used to prevent cavitation in the following cases:

- for dosing media with a high viscosity
- for degassing dosing media
- for long suction lines
- for large suction lift.

In the 'Setup > SlowMode' menu, the speed of the suction stroke can be reduced to 50 % or 25 %.

Enabling the 'SlowMode' function reduces the maximum dosing flow of the pump to the set percentage value!
6.7 FlowControl

FC/FCM control variant.

This function is used to monitor the dosing process. Although the pump is running, various influences e.g. air bubbles, can cause a reduced flow or even stop the dosing process. In order to guarantee optimum process safety, the enabled FlowControl function directly detects and indicates the following errors and deviations:

- Overpressure
- Damaged discharge line
- Air in the dosing chamber
- Cavitation
- Suction valve leakage
- Discharge valve leakage.

The occurrence of a fault is indicated by the ‘eye’ symbol flashing. The faults are displayed in the ‘Alarm’ menu (see section 8. Faults).

FlowControl works with a maintenance-free sensor in the dosing head. During the dosing process, the sensor measures the current pressure and continuously sends the measured value to the microprocessor in the pump. An internal indicator diagram is created from the current measured values and the current diaphragm position (stroke length). Causes for deviations can be identified immediately by aligning the current indicator diagram with a calculated optimum indicator diagram. Air bubbles in the dosing head reduce e.g. the discharge phase and consequently the stroke volume (see fig. 33).

Setting FlowControl

The 'FlowControl' function is set using the two parameters 'Sensitivity' and 'Delay' in the 'Setup > FlowControl' menu.

Sensitivity

In 'Sensitivity' the deviation in stroke volume, which will result in an error message, is set in percent.

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>approx. 70 %</td>
</tr>
<tr>
<td>Medium</td>
<td>approx. 50 %</td>
</tr>
<tr>
<td>High</td>
<td>approx. 30 %</td>
</tr>
</tbody>
</table>

Delay

The 'Delay' parameter is used to define the time period until an error message is generated: 'short', 'medium' or 'long'. The delay depends on the set dosing flow and therefore cannot be measured in strokes or time.

Fig. 33 Indicator diagram

1. Compression phase
2. Discharge phase
3. Expansion phase
4. Suction phase

Pressure

Stroke length

Trouble-free dosing stroke

Faulty dosing stroke: Air bubbles in the dosing head
6.8 Pressure monitoring

FC/FCM control variant.

A pressure sensor monitors the pressure in the dosing head. If the pressure during the discharge phase falls below 2 bar, a warning is generated (pump continues running). If in the 'Setup > Pressure monitoring' menu the function 'Min. pressure alarm' is activated, an alarm is generated and the pump is stopped.

If the pressure exceeds the cut-off pressure set in the 'Setup > Pressure monitoring' menu, the pump is shut down, enters the standby state and indicates an alarm.

The pump restarts automatically once the backpressure falls below the cut-off pressure!

6.8.1 Pressure setting ranges

<table>
<thead>
<tr>
<th>Type</th>
<th>Fixed min. pressure (bar)</th>
<th>Settable max. pressure [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA 7.5 - 16</td>
<td>< 2</td>
<td>3 ... 17</td>
</tr>
<tr>
<td>DDA 12-10</td>
<td>< 2</td>
<td>3 ... 11</td>
</tr>
<tr>
<td>DDA 17-7</td>
<td>< 2</td>
<td>3 ... 8</td>
</tr>
<tr>
<td>DDA 30-4</td>
<td>< 2</td>
<td>3 ... 5</td>
</tr>
</tbody>
</table>

The pressure measured in the dosing head is slightly higher than the actual system pressure.

Therefore the cut-off pressure should be set min. 0.5 bar higher than the system pressure.

Warning

Install a pressure-relief valve in the pressure line to provide protection against impermissibly high pressure!

6.8.2 Calibration of pressure sensor

The pressure sensor is calibrated in the factory. As a rule, it does not need to be re-calibrated. If specific circumstances (e.g., pressure sensor exchange, extreme air pressure values at the location of the pump) necessitate a calibration, the sensor can be calibrated as follows:

1. Set pump to 'Stop' operational state.
2. Make system pressureless and flush.
3. Dismantle suction line and suction valve.

Calibrating when the suction valve is installed produces incorrect calibration and can cause personal injuries and damage to property!

Only carry out a calibration if this is technically required!

4. Proceed as described below to calibrate:

Plug in pressure sensor plug or select 'Setup > FlowControl active' menu

Prompt: 'Activate FlowContr.?'

✓ FlowControl not activated

Prompt: 'Sensor calibration?'

✓ FlowControl active, Sensor not calibrated.

Prompt: 'Suction valve removed?'

✓ Sensor not calibrated.

Calibration error

Message: 'Sensor calib. OK
Current pressure: X bar'

' Repeat?'

Message: 'Sensor calib. failed!'

Sensor not calibrated.

If a calibration is not successfully possible, check plug connections, cable and sensor and replace defective parts where necessary.
6.9 Flow measurement

FCM control variant

The pump accurately measures the actual flow and displays it. Via the 0/4 - 20 mA analog output, the actual flow signal can easily be integrated into an external process control without additional measuring equipment (see section 6.5 Analog output).

The flow measurement is based on the indicator diagram as described in section 6.7 FlowControl. The accumulated length of the discharge phase multiplied by the stroke frequency produces the displayed actual flow. Faults e. g. air bubbles or backpressure that is too low result in a smaller or larger actual flow. When the *AutoFlowAdapt* function is activated (see section 6.10 AutoFlowAdapt), the pump compensates for these influences by correction of the stroke frequency.

Strokes which cannot be analysed (partial strokes, pressure differential which is too low) are provisionally calculated based on the setpoint value and displayed.

6.10 AutoFlowAdapt

FCM control variant.

The 'AutoFlowAdapt' function is activated in the 'Setup' menu. It detects changes in various parameters and responds accordingly in order to keep the set target flow constant.

Dosing accuracy is increased when 'AutoFlowAdapt' is activated.

This function processes information from the pressure sensor in the dosing head. Errors detected by the sensor are processed by the software. The pump responds immediately regardless of the operation mode by adjusting the stroke frequency or where necessary compensating for the deviations with a corresponding indicator diagram.

If the target flow cannot be achieved by the adjustments, a warning is issued.

'AUTOFLOWADAPT' operates on the basis of the following functions:

- FlowControl: malfunctions are identified (see section 6.7 FlowControl).
- Pressure monitoring: pressure fluctuations are identified (see section 6.8 Pressure monitoring).
- Flow measurement: deviations from the target flow are identified (see section 6.8.2 Calibration of pressure sensor).

Examples of 'AutoFlowAdapt'

Pressure fluctuations

The dosing volume decreases as backpressure increases and conversely the dosing volume increases as the backpressure decreases.

The 'AutoFlowAdapt' function identifies pressure fluctuations and responds by adjusting the stroke frequency. The actual flow is thus maintained at a constant level.

Air bubbles

The 'AutoFlowAdapt' function identifies air bubbles. The pump responds with a special indicator diagram due to which the air bubbles are removed as a top priority (deaeration).

If the air bubbles have not been eliminated after a maximum of 60 strokes, the pump switches to the 'Air bubble' warning status and returns to the normal indicator diagram.

6.11 Auto deaeration

Dosing degassing media can result in air pockets in the dosing head during breaks in dosing. This can result in no medium being dosed when restarting the pump. The 'Setup > Auto deaeration' function performs pump deaeration automatically at regular intervals. Software-controlled diaphragm movements encourage any bubbles to rise and gather at the discharge valve so that they can be removed on the next dosing stroke.

The function works:

- when the pump is not in the 'Stop' mode
- during breaks in dosing (e. g. External stop, no incoming pulses, etc.).

Low volumes can be displaced into the discharge line by the diaphragm movements. When dosing strongly degassing media, this is however virtually impossible.
6.12 Key lock
The key lock is set in the ‘Setup > Key lock’ menu by entering a four-digit code. It protects the pump by preventing changes to settings. Two levels of key lock can be selected:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings</td>
<td>All settings can only be changed by entering the lock code. The start/stop key and the 100 % key are not locked.</td>
</tr>
<tr>
<td>Settings + keys</td>
<td>The start/stop key and the 100 % key and all settings are locked.</td>
</tr>
</tbody>
</table>

It is still possible to navigate in the ‘Alarm’ and ‘Info’ main menu and reset alarms.

Temporary deactivation
If the key lock function is activated but settings need to be modified, the keys can be unlocked temporarily by entering the deactivation code. If the code is not entered within 10 seconds, the display automatically switches to the ‘Operation’ main menu. The key lock remains active.

Deactivation
The key lock can be deactivated in the ‘Setup > Key lock’ menu via the ‘Off’ menu point. The key lock is deactivated after the general code ‘2583’ or a pre-defined custom code has been entered.

6.13 Display Setup
Use the following settings in the ‘Setup > Display’ menu to adjust the display properties:
- Units (metric/US)
- Display contrast
- Additional display.

6.13.1 Units
Metric units (litres/millilitres/bar) or US units (US gallons/PSI) can be selected. According to the operation mode and menu, the following units of measurement are displayed:

<table>
<thead>
<tr>
<th>Operation mode/ function</th>
<th>Metric units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual control</td>
<td>ml/h or l/h</td>
<td>gph</td>
</tr>
<tr>
<td>Pulse control</td>
<td>ml/(\text{m}) (\text{l})/(\text{m}) (\text{l})</td>
<td>(\text{ml}/\text{l})/(\text{g}) (\text{l}/\text{g})</td>
</tr>
<tr>
<td>0/4-20 mA</td>
<td>ml/h or l/h</td>
<td>gph</td>
</tr>
<tr>
<td>Analogue control</td>
<td>ml or l</td>
<td>gal</td>
</tr>
<tr>
<td>Batch (pulse- or timer-controlled)</td>
<td>ml or l</td>
<td>gal</td>
</tr>
<tr>
<td>Calibration</td>
<td>ml</td>
<td>ml</td>
</tr>
<tr>
<td>Volume counter</td>
<td>l</td>
<td>gal</td>
</tr>
<tr>
<td>Pressure monitoring</td>
<td>bar</td>
<td>psi</td>
</tr>
</tbody>
</table>

6.13.2 Additional display
Additional display provides additional information about the current pump status. The value is shown in the display with the corresponding symbol.

In ‘Manual’ mode the ‘Actual flow’ information can be displayed with \(Q = 1.28\) l/h (see fig. 34).

Fig. 34 Display with additional display

The additional display can be set as follows:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosed volume</td>
<td>Dosed vol. since last reset (see Counters on page 21)</td>
</tr>
<tr>
<td>Actual flow</td>
<td>Current actual flow (1))</td>
</tr>
<tr>
<td>Backpressure</td>
<td>Current backpressure in the dosing head (2))</td>
</tr>
</tbody>
</table>

\(1)\) only DDA-FCM control variant
\(2)\) only DDA-FCM/FC control variant.
6.14 Time/date

The time and date can be set in the ‘Setup > Time+date’ menu.

Caution
The conversion between summer and winter time does not take place automatically!

6.15 Bus communication

The pump is supplied with an integrated module for GENIbus communication. The pump identifies the bus control after connecting to the corresponding signal input. The "Activate Genibus?" prompt is displayed. After confirmation, the ‘Bus’ submenu appears in the ‘Setup’ menu.

Fig. 35 ‘Setup > Bus’ menu

The corresponding symbol appears in the ‘Activated functions’ area in the ‘Operation’ menu.

The pump can also be integrated into a Profibus DP network using the additional E-box module (retrofitting possible).

The bus communication enables remote monitoring and setting of the pump via a fieldbus system. The accompanying fieldbus documentation and the Profibus GSD file can be downloaded from the Internet.

www.grundfosalldos.com

6.16 Inputs/outputs

In the ‘Setup > Inputs/outputs’ menu, you can configure the two outputs ‘Relay 1+2’ and the signal inputs ‘External stop’, ‘Empty signal’ and ‘Low level signal’.

Fig. 36 ‘Setup > Inputs/outputs’ menu

6.16.1 Relay outputs

The pump can switch two external signals using installed relays. The relays are switched by potential-free pulses. The connection diagram of the relays is shown in section 4.3 Electrical connection. Both relays can be allocated with the following signals:

<table>
<thead>
<tr>
<th>Relay 1 signal</th>
<th>Relay 2 signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm*</td>
<td>Alarm</td>
<td>Display red, pump stopped (e. g. empty signal, etc.)</td>
</tr>
<tr>
<td>Προειδοποιηση*</td>
<td>Warning</td>
<td>Display yellow, pump is running (e. g. low-level signal, etc.)</td>
</tr>
<tr>
<td>Stroke signal</td>
<td>Stroke signal*</td>
<td>each full stroke</td>
</tr>
<tr>
<td>Pump dosing</td>
<td>Pump dosing</td>
<td>Pump running and dosing</td>
</tr>
<tr>
<td>Bus control</td>
<td>Bus control</td>
<td>Activated by a command in the bus communication</td>
</tr>
<tr>
<td>Timer, cycle</td>
<td>see following section</td>
<td></td>
</tr>
<tr>
<td>Timer, week</td>
<td>see following section</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO*</td>
</tr>
<tr>
<td>NC</td>
</tr>
</tbody>
</table>

* Factory setting
Timer, cycle (relay 2)
For the ‘Relay 2 > Timer cycle’ function, set the following parameters:
• Dosing time (t₁)
• Start delay (t₂)
• Cycle time (t₃)

6.16.3 Empty and low-level signals
In order to monitor the filling level in the tank, a dual-level sensor can be connected to the pump. The pump responds to the signals as follows:

<table>
<thead>
<tr>
<th>Sensor signal</th>
<th>Pump status</th>
</tr>
</thead>
</table>
| Low level | • Display is yellow
 | • ▼ flashes
 | • Pump continues running |
| Empty | • Display is red
 | • ▼ flashes
 | • Pump stops |

Both signal inputs are allocated to the closed contact (=>NO) in the factory. They can be re-allocated in the ‘Setup > Inputs/outputs’ menu to open contact (=>NC).

6.17 Basic settings
All settings can be reset to the settings default upon delivery in the ‘Setup > Basic settings’ menu. Selecting ‘Save customer settings’ saves the current configuration to the memory. This can then be activated using ‘Load customer settings’.

The memory always contains the previously saved configuration. Older memory data is overwritten.

Caution
Frequent disengagement from the mains voltage, e.g. via a relay, can result in damage to the pump electronics and to the breakdown of the pump. The dosing accuracy is also reduced as a result of internal start procedures.
Do not control the pump via the mains voltage for dosing purposes!
Only use the 'External stop' function to start and stop the pump!

The contact type is factory-set to closed contact (=>NO). In the ‘Setup > Inputs/outputs > External stop’ menu, the setting can be changed to open contact (=>NC).
7. Service

In order to ensure a long service life and dosing accuracy, wearing parts such as diaphragms and valves must be regularly checked for signs of wear. Where necessary, replace worn parts with original spare parts made from suitable materials.

Should you have any questions, please contact your service partner.

Warning

If the diaphragm leaks or is broken, dosing liquid will escape from the discharge opening on the dosing head (see fig. 3).

Take suitable precautions to prevent harm to health and damage to property caused by escaping dosing liquid!

Check daily whether liquid is escaping from the discharge opening!

7.1 Service system

According to the motor runtime or after a defined period of operation, service requirements will appear. Service requirements appear regardless of the current operational state of the pump and do not affect the dosing process.

<table>
<thead>
<tr>
<th>Service requirement</th>
<th>Motor runtime [h]*</th>
<th>Time interval [months]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Service soon’</td>
<td>7500</td>
<td>23</td>
</tr>
<tr>
<td>‘Service now’</td>
<td>8000</td>
<td>24</td>
</tr>
</tbody>
</table>

* Since the last service system reset

Fig. 38 ‘Service soon’

Fig. 39 ‘Service now’

The service requirement signals when the replacement of wearing parts is due and displays the number of the service kit. Press the click wheel to temporarily hide the service prompt.

When the ‘Service now’ message appears (displayed daily), the pump must be serviced immediately. To signalise in the ‘Operation’ menu, the symbol appears in the ‘Signal/error display’ area of the display.

The number of the service kit required is also displayed in the ‘Info’ menu.

For media which result in increased wear, the service interval must be shortened.

7.2 Perform service

Only spare parts and accessories from Grundfos should be used for maintenance. The usage of non-original spare parts and accessories renders any liability for resulting damages null and void.

Information about carrying out maintenance can be found in the service kit catalog on our homepage (www.grundfosaldos.com).

Warning

When dosing dangerous media, observe the corresponding precautions in the safety data sheets!

Risk of chemical burns!

Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!

Do not allow any chemicals to leak from the pump. Collect and dispose of all chemicals correctly!

Before any work to the pump, the pump must be in the ‘Stop’ operational state or be disconnected from the mains. The system must be pressureless!
7.2.1 Dosing head overview

Fig. 40 Changing the diaphragm and valves

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Safety diaphragm</td>
</tr>
<tr>
<td>2</td>
<td>Flange</td>
</tr>
<tr>
<td>3</td>
<td>O-ring</td>
</tr>
<tr>
<td>4</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>5</td>
<td>Valve on discharge side</td>
</tr>
<tr>
<td>6</td>
<td>Valve on suction side</td>
</tr>
<tr>
<td>7</td>
<td>Dosing head</td>
</tr>
<tr>
<td>8</td>
<td>Screws with discs</td>
</tr>
<tr>
<td>9</td>
<td>Cover</td>
</tr>
<tr>
<td>10</td>
<td>Deaeration valve</td>
</tr>
</tbody>
</table>

7.2.2 Dismantling the diaphragm and valves
1. Make system pressureless.
2. Empty dosing head before maintenance and flush it if necessary.
3. Set pump to ‘Stop’ operational state using the ‘Start/stop key’.
4. Press the ‘Start/stop’ and ‘100 %’ keys at the same time to put the diaphragm into ‘out’ position.
 – Symbol – must be displayed as the operational state (see fig. 14).
5. Take suitable steps to ensure that the returning liquid is safely collected.
6. Dismantle suction, pressure and deaeration hose.
7. Dismantle valves on suction and discharge side (5, 6).
8. Remove the cover (9).
9. Undo screws (8) on the dosing head (7) and remove with discs.
10. Remove the dosing head (7).
11. Unscrew diaphragm (4) counter-clockwise and remove with flange (2).

7.2.3 Reassembling the diaphragm and valves
1. Attach flange (2) correctly and screw on new diaphragm (4) clockwise.
 – Make sure that the O-ring (3) is seated correctly!
2. Press the ‘Start/stop’ and ‘100 %’ keys at the same time to put the diaphragm into ‘in’ position.
 – Symbol – must be displayed as the operational state (see fig. 14).
3. Attach the dosing head (7).
4. Install screws with discs (8) and cross-tighten.
 – Torque: 3 Nm.
5. Attach the cover (9).
6. Install new valves (5, 6).
 – Do not interchange valves and pay attention to direction of arrow.
7. Connect suction, pressure and deaeration hose (see section 4.2 Hydraulic connection)
8. Press the ‘Start/Stop’ key to leave the service mode.
9. Deaerate dosing pump (see section 5.2 Deaerating the pump).
10. Please observe the notes on commissioning in section 5. Commissioning!

7.3 Resetting the service system
After performing the service, the service system must be reset using the ‘Info > Reset service system’ function.

7.4 Repairs

Warning
The pump housing must only be opened by personnel authorised by Grundfos!
Repairs must only be carried out by authorised and qualified personnel!
Switch off the pump and disconnect it from the voltage supply before carrying out maintenance work and repairs!

After consulting Grundfos, please send the pump, together with the safety declaration completed by a specialist, to Grundfos. The safety declaration can be found at the end of these instructions. It must be copied, completed and attached to the pump.

Caution
If the pump has been used to dose toxic liquids or liquids hazardous to health, the pump must be cleaned prior to dispatch!

If the above requirements are not met, Grundfos may refuse to accept delivery of the pump. The shipping costs will be charged to the sender.
8. Faults

In the event of faults in the dosing pump, a warning or an alarm is triggered. The corresponding fault symbol flashes in the 'Operation' menu, see section 8.1 List of faults. The cursor jumps to the 'Alarm' main menu symbol. Press the click wheel to open the 'Alarm' menu and, where necessary, faults to be acknowledged will be acknowledged.

A yellow display indicates a warning and the pump continues running.

A red display indicates an alarm and the pump is stopped.

The last 10 faults are stored in the 'Alarm' main menu. When a new fault occurs, the oldest fault is deleted.

The two most recent faults are shown in the display, you can scroll through all the other faults. The time and cause of the fault are displayed.

The list of faults can be deleted at the end of the list.

If there is a service requirement, this appears when the 'Alarm' menu is opened. Press the click wheel to temporarily close the service prompt (see section 7.1 Service system).
8.1 List of faults

8.1.1 Faults with error message

<table>
<thead>
<tr>
<th>Display in the 'Alarm' menu</th>
<th>Possible cause</th>
<th>Possible remedy</th>
</tr>
</thead>
</table>
| ▼ Empty (Alarm) | • Dosing medium tank empty | • Fill tank.
• Check contact setting (NO/NC) |
| ▼ Low level (Warning) | • Dosing medium tank almost empty | |
| Overpressure (Alarm) | • Discharge valve blocked
• Isolating valve in discharge line closed
• Pressure peaks due to high viscosity
• 'Max. pressure' set too low (see section 6.8 Pressure monitoring) | • Replace valve if necessary (see section 7.2 Perform service).
• Check flow direction of valves (arrow) and correct if necessary.
• Open the isolating valve (on the discharge side).
•Enlarge the isolating valve (on the discharge side).
• Change pressure setting (see section 6.8 Pressure monitoring). |
| Backpressure low (Warning/alarm*) | • Faulty diaphragm
• Broken discharge line
• Pressure differential between suction and discharge side too low
• Leakage in the pressure retention valve at Q < 1 l/h
• Deaeration valve open | • Change the diaphragm (see section 7.2 Perform service).
• Check discharge line and repair if necessary.
• Install additional spring-loaded valve (approx. 3 bar) on the discharge side.
• Close the deaeration valve. |
| Air bubble (Warning) | • Broken/leaky suction line
• Strongly degassing medium
• Tank dosing medium empty | • Check suction line and repair if necessary.
• Provide positive inlet pressure (place dosing medium tank above the pump).
• Enable 'Slow Mode' (see section 6.6 SlowMode).
• Fill tank. |
| Cavitation (Warning) | • Blocked/constricted/squeezed suction line
• Blocked/constricted suction valve
• Suction lift too high
• Viscosity too high | • Enable 'Slow Mode' (see section 6.6 SlowMode).
• Reduce suction lift.
• Increase suction hose diameter.
• Check suction line and open isolating valve if necessary. |
| Suct. valve leak (Warning) | • Leaky/dirty suction valve
• Deaeration valve open | • Check valve and tighten it up.
• Flush system.
• Replace valve if necessary (see section 7.2 Perform service).
• Check O-ring position.
• Install filter in suction line.
• Close the deaeration valve. |
| Disch. valve leak (Warning) | • Leaky/dirty discharge valve
• Leakage in the pressure retention valve
• Deaeration valve open | • Check valve and tighten it up.
• Flush system.
• Replace valve if necessary (see section 7.2 Perform service).
• Check O-ring position.
• Install screen in suction line.
• Close the deaeration valve.
• Install spring-loaded valve on the discharge side. |
| Flow deviation (Warning) | • Considerable deviation between target and actual flow
• Pump not / incorrectly calibrated | • Check installation.
• Calibrate the pump (see section 5.3 Calibrating the pump). |
<table>
<thead>
<tr>
<th>Display in the 'Alarm' menu</th>
<th>Possible cause</th>
<th>Possible remedy</th>
</tr>
</thead>
</table>
| 🚨 Pressure sensor (Warning) | • Broken FlowControl cable
• Sensor defect
• Pressure sensor not correctly calibrated. | • Check plug connection.
• Change sensor if necessary.
• Calibrate pressure sensor correctly (see section 6.8.2 Calibration of pressure sensor). |
| 🔄 Motor blocked (alarm) | • Backpressure greater than nominal pressure
• Damage to gears | • Reduce backpressure.
• Arrange for repair of gears, if necessary. |
| 📡 BUS (Warning/alarm*) | • Fieldbus communication error | • Check cables for correct specification and damage; replace if necessary.
• Check cable routing and shielding; correct if necessary. |
| 🔴 E-Box (Alarm) | • E-Box connection error
• Faulty E-Box | • Check plug connection.
• Replace E-Box if necessary. |
| 🔄 Cable break (Alarm) | • Defect in analog cable 4 - 20 mA (input current < 2 mA) | • Check cable/plug connections and replace, if necessary.
• Check signal transmitter. |
| 🌬 Service soon/now (Warning) | • Time interval for service expired | • Perform service (see section 7.2 Perform service). |

* Depending on setting
8.1.2 General faults

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Possible remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing flow too high</td>
<td>Inlet pressure greater than backpressure</td>
<td>Install additional spring-loaded valve (approx. 3 bar) on the discharge side.</td>
</tr>
<tr>
<td></td>
<td>Incorrect calibration</td>
<td>Calibrate the pump (see section 5.3 Calibrating the pump).</td>
</tr>
<tr>
<td>Air in dosing head</td>
<td></td>
<td>Deaerate the pump.</td>
</tr>
<tr>
<td>Faulty diaphragm</td>
<td></td>
<td>Change the diaphragm (see section 7.2 Perform service).</td>
</tr>
<tr>
<td>Leakage/fracture in lines</td>
<td></td>
<td>Check and repair lines.</td>
</tr>
<tr>
<td>Valves leaking or blocked</td>
<td></td>
<td>Check and clean valves.</td>
</tr>
<tr>
<td>Valves installed incorrectly</td>
<td></td>
<td>Check that the arrow on the valve housing is pointing in the direction of flow. Check whether all O-rings are installed correctly.</td>
</tr>
<tr>
<td>Blocked suction line</td>
<td></td>
<td>Clean suction line/install filter.</td>
</tr>
<tr>
<td>Suction lift too high</td>
<td></td>
<td>Reduce suction lift.</td>
</tr>
<tr>
<td>Viscosity too high</td>
<td></td>
<td>Install priming aid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable ‘Slow Mode’ (see section 6.6 SlowMode).</td>
</tr>
<tr>
<td>Pump outside the calibration</td>
<td></td>
<td>Calibrate the pump (see section 5.3 Calibrating the pump).</td>
</tr>
<tr>
<td>Deaeration valve open</td>
<td></td>
<td>Close the deaeration valve.</td>
</tr>
<tr>
<td>Irregular dosing</td>
<td>Valves leaking or blocked</td>
<td>Tighten up valves, replace valves if necessary (see section 7.2 Perform service).</td>
</tr>
<tr>
<td></td>
<td>Backpressure fluctuations</td>
<td>Keep backpressure constant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘AutoFlowAdapt’ activate (only FCM).</td>
</tr>
<tr>
<td>Liquid escaping from the discharge opening on the flange</td>
<td>Faulty diaphragm</td>
<td>Change the diaphragm (see section 7.2 Perform service).</td>
</tr>
<tr>
<td></td>
<td>Dosing head screws not screwed in as far as they will go</td>
<td>Tighten up screws (see section 4.2 Hydraulic connection).</td>
</tr>
<tr>
<td></td>
<td>Valves not screwed in as far as they will go</td>
<td>Tighten up valves/union nuts (see section 4.2 Hydraulic connection).</td>
</tr>
<tr>
<td>Liquid escaping</td>
<td>Suction lift too high</td>
<td>Reduce suction lift; if necessary, provide positive inlet pressure.</td>
</tr>
<tr>
<td>Pump not sucking in</td>
<td>Backpressure too high</td>
<td>Open the deaeration valve.</td>
</tr>
<tr>
<td></td>
<td>Soiled valves</td>
<td>Flush system, replace valves if necessary (see section 7.2 Perform service).</td>
</tr>
</tbody>
</table>

9. Disposal

This product and all its associated parts must be disposed of in an environmentally friendly manner. Use appropriate waste collection services. If there is no such facility or the facility refuses to accept these materials used in the product, the product can be sent to the nearest Grundfos company or Grundfos service centre.

Subject to alterations.
Appendix

Safety declaration

Please copy, fill in and sign this sheet and attach it to the pump returned for service.

Product type (nameplate)

Model number (nameplate)

Dosing medium

Fault description

Please make a circle around the damaged parts.
In the case of an electrical or functional fault, please mark the cabinet.

Please describe the error / cause of the error in brief.

We hereby declare that the pump has been cleaned and is completely free from chemical, biological and radioactive substances.

Date and signature

Company stamp
Argentina
Bombas GRUNDFOS de Argentina S.A.
Ruta Panamericana km. 37.500
Lote 34A
1619 - Garín
Pcia. de Buenos Aires
Phone: +54-3327 414 444
Telefax: +54-3327 411 111

Australia
GRUNDFOS Pumps Pty. Ltd.
P.O. Box 2040
Regency Park
South Australia 5942
Phone: +61-8-8461-4611
Telefax: +61-8-8340 0155

Austria
GRUNDFOS Pumpen Vertrieb Ges.m.b.H.
Grundfosstraße 2
A-5082 Grödig/Salzburg
Tel.: +43-6246-883-30
Telefax: +43-6246-883-0

Belgium
N.V. GRUNDFOS Bellux S.A.
Boomseesteenweg 81-83
B-2630 Aarselaar
Télécopie: +32-3-870 7300
Télécopie: +32-3-870 7301

Belorusia
Представительство GRUNDFOS в Минске
220123, Минск,
ул. В. Хоружей, 22, оф. 1105
Tel.: (+37517) 233 9769
Fax: (+37517) 233 9769
E-mail: grundfos_minisk@mail.ru

Bosnia/Herzegovina
GRUNDFOS Sarajevo
Trg Heroja 16,
BiH-76000 Sarajevo
Phone: +387 33 713 290
Telefax: +387 33 605 079
E-mail: grundfos@bih.net.ba

Brazil
BOMBAS GRUNDFOS DO BRASIL
Av. Humberto de Alencar
Castelo Branco, 630
CEP 09850 - 350
São Bernardo do Campo - SP
Phone: +55-11 4393 5533
Telefax: +55-11 4343 5015

Bulgaria
ГРУНДФОС Представителство
ул. Христо Прокопиево, 21
Бг-1592 София
Tel.: +359 2 49 22 200
Fax: +359 2 49 22 201
email: bulgaria@grundfos.bg

Canada
GRUNDFOS Canada Inc.
2941 Brighton Road
Oakville, Ontario
L6H 6C9
Phone: +1-905 829 9533
Telefax: +1-905 829 9512

China
Grundfos Aldos
Dosing & Disinfection
ALLDOS (Shanghai) Water Technology Co. Ltd.
West Unit, 1 Fi Ti No. 2
Building (T 4-2)
278 Jinhu Road, Jin Qiao
Export Processing Zone
Pudong New Area
Shanghai 201206
Phone: +86 21 5055 1012
Telefax: +86 21 5032 0596
E-mail: grundfosaldos-cn@grundfos.com

China
GRUNDFOS Pumps (Shanghai) Co. Ltd.
22 Floor, Xin Hua Lian Building
755-775 Huai Hai Rd. (M)
Shanghai 200020
PRC
Phone: +86-512-67 61 11 80
Telefax: +86-512-67 61 87 67

Croatia
GRUNDFOS CROATIA d.o.o.
Čeinli 37, Buzin
HR-10010 Zagreb
Phone: +385 1 6595 499
www.grundfos.hr

Czech Republic
GRUNDFOS s.r.o.
Čapkovského 21
779 00 Olomouc
Phone: +420-562 67 61 11
Telefax: +420-562 67 61 87

Denmark
GRUNDFOS DK A/S
Martin Bachs Vej 3
DK-8580 Bjerringbro
Tel.: +45-87 50 50 50
Telefax: +45-87 50 50 51
E-mail: info_GDK@grundfos.com

Estonia
GRUNDFOS Pumps Eesti OÜ
Peterburji tee 92G
11415 Tallinn
Tel.: +372 606 1690
Fax: +372 606 1691

Finland
OY GRUNDFOS Pumput AB
Mestarintie 11
FIN-01730 Vantaa
Phone: +358-3066 5650
Telefax: +358-3066 56550

France
Pompes GRUNDFOS
Distribution S.A.
Parc d’Activités de Chenes
57, rue de Malacombe
F-38290 St. Quentin Fallavier
(Lyon)
Tel.: +33-4 74 82 15 15
Télécopie: +33-4 74 94 10 51

Germany
GRUNDFOS Water Treatment GmbH
Reetzi estraße 85
D-76327 Pfifnztal (Söllingen)
Tel.: +49 7240 61-0
Telefax: +49 7240 61-177
E-mail: gwtf@grundfos.com

Germany
GRUNDFOS GMBH
Schulterstr. 33
D-40699 Erkrath
Tel.: +49-(0) 211 929 69-0
Telefax: +49-(0) 211 929 69-3799
E-mail: infoservice@grundfos.de
Service in Deutschland:
E-mail: kundendienst@grundfos.de

Greece
GRUNDFOS Hellas A.E.B.
20th km. Athinon- Markopouloou
Av. P.O. Box 71
GR-19002 Peania
Phone: +0030-210-66 83 400
Telefax: +0030-210-66 46 273

Hong Kong
GRUNDFOS Pumps (Hong Kong) Ltd.
Unit 1, Ground floor
Siu Yi Industrial Centre
29-33 Wing Lam Street, Cheung Sha Wan
Kowloon
Phone: +852-27861706
Telefax: +852-27858664

Hungary
GRUNDFOS Hungária Kft.
Park u. 8
H-2045 Törökbálint,
Tel.: +36-23 511 111

India
GRUNDFOS Pumps India Private Limited
118 Old Mahabalipuram Road
Thirapakkam
Chennai 600 096
Phone: +91-44 2496 6800

Indonesia
PT GRUNDFOS Pompa Jl. Rawa Sumur III, Blok III / CC-1
Kawasan Industri, Puloagung
Jakarta 13930
Phone: +62-21-460 6909
Telefax: +62-21-460 6910 / 460 6901

Ireland
GRUNDFOS (Ireland) Ltd.
Unit A, Merrywell Business Park
Ballymount Road Lower
Dublin 12
Phone: +353-1-4089 800
Telefax: +353-1-4089 830

Italy
GRUNDFOS Pompe Italia S.r.l.
Via Gra Sasso 4
I-20060 Truccazzano (Milano)
Tel.: +39-02 9583 8112
E-mail: info_gnl@grundfos.com

Japan
GRUNDFOS Pumps K.K.
Gotanda Metallion Bldg. 5F,
2-5-11, Higashi-gotanda
Shiagawa-ku, Tokyo,
141-0022 Japan
Phone: +81 35 448 1391
Telefax: +81 35 448 9619

Korea
GRUNDFOS Pumps Korea Ltd.
6th Floor, Auj Building 679-5
Yeoksam-dong, Kangnam-ku,
135-916 Seoul, Korea
Phone: +82-2-6517 600
Telefax: +82-2-6533 725

Latvia
SIA GRUNDFOS Pumps Latvia
deglava biznesa centrs
Augusta Deglava iela 60,
LV-1035, Riga,
Tel.: +371 714 9640, 7 149 641
Faks: +371 914 9646

Lithuania
GRUNDFOS Pumps UAB
Smolensko g. 6
LT-03201 Vilnius
Tel.: +370 52 395 430
Fax: +370 52 395 431

Malaysia
GRUNDFOS Pumps Sdn. Bhd.
7 Jalan Peguam U1/25
Glenmarie Industrial Park
40150 Shah Alam
Selangor
Phone: +60-3-5659 2922
Telefax: +60-3-5659 2866

Mexico
Bombas GRUNDFOS de Mexico S.A. de C.V.
Boulevard TLC No. 15
Parque Industrial Stiva
Apodaca, N.L. 66600
Parque Industrial Stiva
Aeropuerto
Acapulco, N.L. 66600
Phone: +52-81-8144 4009
Telefax: +52-81-8144 4010

Netherlands
GRUNDFOS Netherlands
Veluweweg 35
1326 AE Almere
Postbus 22015
1302 CA ALMERE
Tel.: +31-88-478 6336
Fax: +31-88-478 6332
E-mail: info_gnl@grundfos.com

New Zealand
GRUNDFOS Pumps NZ Ltd.
17 Beatrice Tinsley Crescent
North Harbour Industrial Estate
Albany, Auckland
Phone: +64-9-415 3240
Telefax: +64-9-415 3250

Norway
GRUNDFOS Pumper A/S
Strømsveien 344
Postboks 235, Leiridal
N-1011 Oslo
Tlf.: +47-22 90 47 00
Telefax: +47-22 32 21 50
Grundfos companies
Poland
GRUNDFOS Pompy Sp. z o.o.
ul. Klonowa 23
Baranowo k. Poznania
PL-62-081 Przemysl
Tel: (+48-61) 650 13 00
Fax: (+48-61) 650 13 50
Portugal
Bomba GRUNDFOS Portugal, S.A.
Rua Calvet de Magalhães, 241
Apartado 1079
P-2770-153 Paço de Arcos
Tel.: +351-21-440 76 00
Telefax: +351-21-440 76 90
România
GRUNDFOS Pompe România SRL
Bd. Buirutei, nr 103
Pantelimon county Ilfov
Phone: +40 21 200 4100
Telefax: +40 21 200 4101
E-mail: romania@grundfos.ro
Russia
ООО Грундфос
Россия, 109544 Москва, ул.
Школьная 39
Тел. (+3) 495 737 56 00, 564 88 00
Факс (+7) 495 737 74 36
E-mail grundfos.moscow@grundfos.com
Serbia
GRUNDFOS Predstavništvo Beograd
Dr. Milutina Ivkovića 2a/1
YU-11000 Beograd
Phone: +381 11 26 47 877 / 11 26 47 496
Telefax: +381 11 26 48 340
Singapore
GRUNDFOS (Singapore) Pte. Ltd.
24 Tuas West Road
Jurong Town
Singapore 638381
Phone: +65-6865 1222
Telefax: +65-6861 8402
Slovenia
GRUNDFOS d.o.o.
Šlandrova 8b, SI-1231
Ljubljana-Črnuče
Phone: +386 1 568 0610
Telefax: +386 1 568 0619
E-mail: slovenia@grundfos.si
South Africa
Grundfos (PTY) Ltd.
Corner Mountjoy and George Allen Roads
Wilkat Ext. 2
Bedfordview 2008
Phone: (+27) 11 579 4800
Fax: (+27) 11 455 6066
E-mail: ismart@grundfos.com
Spain
Bomba GRUNDFOS España S.A.
Camino de la Fuentecilla, s/n
E-28110 Algete (Madrid)
Tel.: +34-91-848 8800
Telefax: +34-91-628 0465
Sweden
GRUNDFOS AB
(Box 333) Lunnagårdsqatan 6
431 24 Mönidal
Tel.: +46(0)771-32 23 00
Telefax: +46(0)31-331 94 60
Switzerland
GRUNDFOS ALLDOS
International AG
Schönmettstraße 4
CH-4153 Reinach
Tel.: +41-61-717 5555
Telefax: +41-61-717 5500
E-mail: grundfosalldos-CH@grundfos.com
Switzerland
GRUNDFOS Pumpen AG
Brugghacherstrasse 10
CH-8117 Fällanden/ZH
Tel.: +41-1-806 8111
Telefax: +41-1-806 8115
Taiwan
GRUNDFOS Pumps (Taiwan) Ltd.
7 Floor, 219 Min-Chuan Road
Taichung, Taiwan, R.O.C.
Phone: +886-4-2305 0868
Telefax: +886-4-2305 0878
Thailand
GRUNDFOS (Thailand) Ltd.
92 Chaloem Phrakiat Rama 9
Road, Dokmai, Pravej, Bangkok
10250
Phone: +66-2-725 8999
Telefax: +66-2-725 8998
Turkey
GRUNDFOS POMPA San. ve Tic. Ltd. Sti.
Gebze Organize Sanayi Bölgesi
Ihsan dede Caddesi, 2. yol 200. Sokak No. 204
41490 Gebze/ Kocaeli
Phone: +90 - 262-679 7979
Telefax: +90 - 262-679 7905
E-mail: satis@grundfos.com
Ukraine
ТОВ ГРУНДФОС Україна
01010 Київ, Вул. Московська 86,
Тел.: (044) 390 40 50
Факс.: (044) 390 40 59
E-mail: ukraine@grundfos.com
United Arab Emirates
GRUNDFOS Gulf Distribution
P.O. Box 16768
Jebel Ali Free Zone
Dubai
Phone: +971-4- 8815 166
Telefax: +971-4-8815 136
United Kingdom
GRUNDFOS Pumps Ltd.
Grovebury Road
Leighton Buzzard/Beds. LU7 8TL
Phone: +44-1525-850000
Telefax: +44-1525-850011
U.S.A.
GRUNDFOS Pumps Corporation
17100 West 118th Terrace
Olathe, Kansas 66061
Phone: +1-913-227-3400
Telefax: +1-913-227-3500

Addresses revised 03.11.2010